СОДЕРЖАНИЕ

1. Исходные данные	2
2. Синтез последовательного корректирующего устройства	
2.2 Расчет частотных характеристик неизменяемой части САУ	
2.3 Построение желаемой ЛАЧХ и синтез последовательного корректирующего ус-	
	7
3. Исследование устойчивости и качества САУ	11
3.1 Определение запасов устойчивости	11
3.2 Построение реакции системы на возмущающее ступенчатое воздействие	
3.3 Построение реакции системы на задающее ступенчатое воздействие	19
4. Исследование точности системы.	
4.2 Вычисление систематической ошибки	
4.2 Вычисление степени влияния помехи	
5. Расчет параметров регулятора скорости	
СПИСОК ЛИТЕРАТУРЫ	

1. Исходные данные

Структурная схема электропривода:

электромагнитная постоянная времени: $T_{\rm M}=0.021~{\rm c};$ электромеханическая постоянная времени: $T_{\rm M}=0.23~{\rm c};$ сопротивление якорной цели: $\rho=0.2;$ коэффициент передачи датчика тока: $k_{\rm дr}=0.6;$ коэффициент передачи тиристорного преобразователя: $K_{\rm n}=4.5;$ коэффициент передачи датчика скорости: $k_{\rm дc}=1;$ постоянная времени тиристорного преобразователя: $T_{\rm n}=0.01~{\rm c}.$

Требуемые характеристики системы: астатизм 2-го порядка; перерегулирование: $\sigma < 30 \div 50\%$; время достижения максимума переходной характеристики: $t_{\scriptscriptstyle M} = 0,12 \div 0,2$ с; время переходного процесса: $t_{\scriptscriptstyle III} = 0,25 \div 0,4$ с.

2. Синтез последовательного корректирующего устройства

Преобразуем структурную схему системы автоматического управления (САУ). Последовательно соединенные звенья заменяем звеном с передаточной функцией:

$$W'(p) = \frac{(T_{s}p+1)\rho}{0.02 K_{n}K_{\partial m}\rho} \cdot \frac{K_{\Pi}}{T_{\Pi}p+1} = \frac{(T_{s}p+1)\rho}{0.02 K_{n}K_{\partial m}p(T_{\Pi}p+1)}.$$

Переносим узел суммирования 3 на место узла 2 и получаем следующую структуру:

Структура неизменяемой части САУ преобразуется к виду:

Передаточная функция звеньев, охваченных отрицательной обратной связью через датчик тока:

$$\begin{split} W_{1}(p) &= \frac{\frac{(T_{_{g}}p+1)\rho}{0.02\,K_{\partial m}\,p(T_{_{\varPi}}p+1)\cdot\rho(T_{_{g}}p+1)}}{1+\frac{(T_{_{g}}p+1)\rho}{0.02\,K_{\partial m}\,p(T_{_{\varPi}}p+1)\cdot\rho(T_{_{g}}p+1)}} = \frac{\rho(T_{_{g}}p+1)}{0.02\,K_{\partial m}\,p(T_{_{\varPi}}p+1)\cdot\rho(T_{_{g}}p+1)+K_{\partial m}}\rho(T_{_{g}}p+1)} = \\ &= \frac{1}{0.02\,K_{\partial m}\,p(T_{_{\varPi}}p+1)+K_{\partial m}} = \frac{1}{0.02\cdot0.6\cdot p\cdot(0.01\,p+1)+0.6} = \frac{1.667}{2\cdot10^{-4}\,p^{2}+2\cdot10^{-2}\,p+1}; \end{split}$$

$$\begin{split} W_2(p) &= \frac{\rho}{T_M p} = \frac{0.2}{0.23 p} = \frac{0.8696}{p}; \\ W_3(p) &= \frac{0.02 K_{\partial m} p (T_M p + 1)}{\rho (T_n p + 1)} = \frac{0.02 \cdot 0.6 p (0.01 p + 1)}{0.2 (0.021 p + 1)} = \frac{0.06 p (0.01 p + 1)}{0.021 p + 1}. \end{split}$$

Переносим узел суммирования 4 на место узла 2:

Передаточная функция (ПФ) неизменяемой части системы:

$$W_{_{H4}}(p) = \frac{W_{_{1}}W_{_{2}}}{1+W_{_{1}}W_{_{2}}W_{_{3}}} = \frac{\frac{1,667}{2\cdot10^{-4}p^{2}+2\cdot10^{-2}p+1} \cdot \frac{0,8696}{p}}{1+\frac{1,667}{2\cdot10^{-4}p^{2}+2\cdot10^{-2}p+1} \cdot \frac{0,8696}{p} \cdot \frac{0,06p(0,01p+1)}{0,021p+1}} = \frac{1,45}{p(2\cdot10^{-4}p^{2}+2\cdot10^{-2}p+1)(0,021p+1)} = \frac{1,45(0,021p+1)}{0,021p+1} = \frac{1,45(0,021p+1)}{p(2\cdot10^{-4}p^{2}+2\cdot10^{-2}p+1)(0,021p+1)+0,087p(0,01p+1)} = \frac{1,334(0,021p+1)}{p(4,2\cdot10^{-6}p^{3}+6,2\cdot10^{-4}p^{2}+4,187\cdot10^{-2}p+1,087)} = \frac{1,334(0,021p+1)}{p(3,864\cdot10^{-6}p^{3}+5,704\cdot10^{-4}p^{2}+3,852\cdot10^{-2}p+1)}.$$

Кубический полином знаменателя, приравненный 0:

$$D(p)=p(3,864\cdot10^{-6} p^3+5,704\cdot10^{-4} p^2+3,852\cdot10^{-2} p+1)=0$$

имеет следующие корни:

$$p_{0,1,2,3} = \begin{cases} 0\\ -51,623\\ -48 - j52,054\\ -48 + j52,054 \end{cases}.$$

Тогда ПФ неизменяемой части САУ можно записать в виде:

$$W_{\mu\mu}(p) = \frac{1,334(0,021 p+1)}{p(p+|p_1|)(p^2+ap+b)},$$

где коэффициенты a и b определяются разложением в ряд при степенях p отношения:

$$\frac{D(p)}{a_0 p \cdot (p + |p_1|)} = \frac{p^3 + 147,62 p^2 + 9968,44 p^2 + 258799,17}{p + 51,62} = p^2 + 96p + 5013,4,$$

где $a_0 = 3,864 \times 10^{-6}$ — коэффициент при p в старшей степени.

Тогда имеем:

$$\begin{split} W_{_{\mathit{H}^{\mathit{u}}}}(p) &= \frac{1,334(0,021\ p+1)}{p\ (p+|p_{1}|)(p^{2}+ap+b)} = \frac{1,334(0,021\ p+1)}{p\cdot 3,864\cdot 10^{-6}(p+51,62)(p^{2}+96p+5013,4)} = \\ &= \frac{1,334(0,021\ p+1)}{p\cdot (0,019\ p+1)(1,995\cdot 10^{-4}\ p^{2}+0,019\ p+1)}. \end{split}$$

С учетом k_{nc} =1 структурная схема САУ с регулятором скорости (корректирующим устройством) имеет вид:

2.2 Расчет частотных характеристик неизменяемой части САУ

Строим логарифмические амплитудно-частотную и фазочастотную характеристики по передаточной функции неизменяемой части САУ:

$$W_{_{\mathit{H}^{\mathit{H}}}}(p) = \frac{1,334(0,021\,p+1)}{p \cdot (0,019\,p+1)(1,995 \cdot 10^{-4}\,p^2 + 0,019\,p+1)}.$$

ЛАЧХ строим в виде отрезков прямых. Определяем частоты сопряжения участков ЛАЧХ:

$$\omega_1 = \frac{1}{0,021} = 47,52 \ c^{-1}; \ \omega_2 = \frac{1}{0,019} = 51,62 \ c^{-1} \ \omega_3 = \frac{1}{\sqrt{1.995 \cdot 10^{-4}}} = 70,8 \ c^{-1}.$$

На частотах $\omega < \omega_1$ ЛАЧХ имеет наклон -20 дб/дек .

При $\omega_1 < \omega < \omega_2$ ЛАЧХ имеет горизонтальный участок, а в интервале частот $\omega_2 < \omega < \omega_3$ наклон ЛАЧХ снова -20 дб/дек. На частотах больше $\omega_3 = 70.81$ с⁻¹ наклон ЛАЧХ -60 дб/дек.

Для построения графика рассчитываем значения ЛАЧХ для различных частот:

При $\omega = 1 \text{ c}^{-1}$:

$$\begin{split} L_{_{\mathit{H}^{\mathit{U}}}}(\omega) &= -20 \mathrm{lg} \left(\frac{\omega}{1{,}334} \right) = -20 \mathrm{lg} \left(\frac{1}{1{,}334} \right) = 2{,}503 \ \partial \mathcal{B} \,; \\ L_{_{\mathit{H}^{\mathit{U}}}}(\omega_{1}) &= L_{_{\mathit{H}^{\mathit{U}}}}(\omega_{2}) = -20 \, lg \left(\frac{\omega}{1{,}334} \right) = -20 \, lg \left(\frac{47{,}52}{1{,}334} \right) = -31{,}05 \ \partial \mathcal{B} \,; \\ L_{_{\mathit{H}^{\mathit{U}}}}(\omega_{3}) &= L_{_{\mathit{H}^{\mathit{U}}}}(\omega_{2}) - L_{_{\mathit{H}^{\mathit{U}}}}(\frac{\omega_{3}}{\omega_{2}}) = -31{,}05 - 20 \mathrm{lg} \left(\frac{70{,}8}{51{,}62} \right) = -33{,}8 \ \partial \mathcal{B} \,. \end{split}$$

ЛФЧХ рассчитываем по формуле:

$$\phi(\omega) = \frac{-\pi}{2} + arctg(0.021\,\omega) - arctg(0.019\,\omega) - arctg\left(\frac{0.019\,\omega}{1 - 1.995 \cdot 10^{-4}\,\omega^2}\right).$$

Рассчитанные значения ЛФЧХ сведены в таблице, графики асимптотической ЛАЧХ и аналитической ЛФЧХ построены на рисунке 1, а) и б) соответственно.

ω, c-1	1	5	10	20	40	60	80	100	200	500
φ(ω), рад	-1,588	-1,656	-1,743	-1,928	-2,36 2	-2,85	-0,135	-0,442	-1,049	-1,369
				5	\mathbf{y}					
				3						
		7								

2.3 Построение желаемой ЛАЧХ и синтез последовательного корректирующего устройства

Система имеет астатизм второго порядка, поэтому желаемая ЛАЧХ на низких частотах имеет наклон -40 дб/дек.

Среднечастотный участок желаемой ЛАЧХ имеет наклон -20 дб/дек, пересекая ось частот на частоте среза ω_c . При заданном перерегулировании σ =30% определеяем по номограмме Солодовникова, что частота среза скорректированной ЛАЧХ равна:

$$\omega_c = 3.6 \frac{\pi}{t_{min}} = \frac{3.6 \cdot 3.1415926}{0.3} = 37.7 \ c^{-1}.$$

ЛАЧХ Ha границах среднечастотного желаемой $L_{x}(\omega)$ равны участка 14 И -14 дБ. соответственно дБ Определяем сопряжения частоты среднечастотного участка:

$$20 \lg \left(\frac{\omega_c}{\omega_4}\right) = 14 \Rightarrow \frac{\omega_c}{\omega_4} = 10^{14/20} = 5,012 \Rightarrow \omega_4 = \frac{\omega_c}{5,012} = 7,52 \ c^{-1};$$

$$20 \lg \left(\frac{\omega_5}{\omega_c}\right) = 14 \Rightarrow \frac{\omega_5}{\omega_c} = 5,012 \Rightarrow \omega_5 = \omega_c \cdot 5,012 = 188,9 \ c^{-1};$$

На верхних частотах наклон желаемой ЛАЧХ может быть таким же как у ЛАЧХ нескорректированной САУ либо -60 дб/дек.

Таким образом, анализируя полученные значения сопрягающих частот, можно записать логико-математическое выражения асимптотической ЛАЧХ желаемой САУ:

$$L_{\infty}(\omega) = -40 \lg \left(\frac{\omega}{k}\right) + 20 \lg \left(\frac{\omega}{\omega_4}\right) \cdot (\omega > \omega_4) - 60 \lg \left(\frac{\omega}{\omega_5}\right) \cdot (\omega > \omega_5),$$

где: $k = \frac{\omega_4}{10^{-14/40}} = \frac{\sqrt{52}}{10^{-14/40}} = 16,84$ - коэффициент передачи скорректированной САУ в разомкнутом состоянии.

Строим графики ЛАЧХ неизменяемой части САУ и график желаемой ЛАЧХ $L_{*}(\omega)$ (рис. 2). Вычитанием графиков получаем ЛАЧХ корректирующего устройства:

$$L_{\kappa\nu}(\omega) = L_{\mu\nu}(\omega) - L_{\mu\mu}(\omega)$$
.

Рис. 2

Для формирования требуемой характеристики корректирующего устройства используем интегрирующие и дифференцирующие звенья.

1) Необходимый спад ЛАЧХ -20 дб/дек на низких частотах получим с помощью интегрирующего звена с передаточной функцией:

$$W_{1k}(p) = \frac{k_1}{p}$$

Определяем коэффициент передачи звена k₁.

На единичной частоте (ω =1 c^{-1}):

$$\begin{split} L_{_{\mathcal{H}}}(1) &= 2,503 \ \partial \mathcal{B} \ ; \\ L_{_{\mathcal{H}}}(1) &= 14 + 40 \ lg \left(\frac{\omega_4}{1}\right) = 14 + 40 \cdot lg \left(\frac{7,52}{1}\right) = 49,05 \ \partial \mathcal{F} \ ; \\ L_{_{1k}}(1) &= 20 \ lg \ (k_1) = L_{_{\mathcal{H}}}(1) - L_{_{\mathcal{H}}}(1) = 49,05 - 2,503 = 46,55 \ \partial \mathcal{B} \ ; \\ lg \ (k_1) &= \frac{46,55}{20} = 2,328 \ ; \\ k_1 &= 10^{2,328} = 212,57 \end{split}$$

2) Для коррекции ЛАЧХ на частотах $\omega_4 < \omega < \omega_1$ используем дифференцирующее звено:

Дифференцирующая RC-цепь, изображенная на схеме, имеет коэффициент передачи на частотах $\omega < \omega_4$ меньше 1 (ЛАЧХ 1). Используем дифференцирующую цепь на операционном усилителе с коэффициентом передачи на низких частотах $k_{k2} = 1$ (ЛАЧХ 2). В этом случае передаточная функция звена равна:

$$W_{k2}(p) = \frac{T_4 p + 1}{T_1 p + 1}; \ T_1 = \frac{1}{\omega_1} = \frac{1}{47,62} = 0,021 \ c; \ T_4 = \frac{1}{\omega_4} = \frac{1}{7,52} = 0,133 \ c;$$
$$W_{k2}(p) = \frac{0,133 \ p + 1}{0,021 \ p + 1}.$$

3) Для формирования желаемой ЛАЧХ на частотах $\omega_2 < \omega < \omega_5$ используем еще одно дифференцирующее звено:

10

$$W_{k3}(p) = \frac{T_2 p + 1}{T_5 p + 1}; \quad T_2 = \frac{1}{\omega_2} = \frac{1}{51,62} = 0,019 \ c; \quad T_5 = \frac{1}{\omega_5} = \frac{1}{188,9} = 5,293 \cdot 10^{-3} \ c.$$

$$W_{k3} = \frac{0,019 \ p + 1}{5,293 \cdot 10^{-3} \ p + 1}.$$

4) На частотах $\omega_3 < \omega < \omega_5$ необходимо обеспечить подъем L_k на 40 дб/дек. Для этого используем последовательное включение двух дифференцирующих звеньев с передаточной функцией:

$$W_{k4}(p) = \left(\frac{T_3 p + 1}{T_5 p + 1}\right)^2, \quad T_3 = \frac{1}{\omega_3} = \frac{1}{70.8} = 0.014 c;$$

$$W_{k4}(p) = \left(\frac{0.014 p + 1}{5.293 \cdot 10^{-3} p + 1}\right)^2.$$

Передаточная функция всего корректирующего устройства:

$$W_{k}(p) = W_{kI}(p) \cdot W_{k2}(p) \cdot W_{k3}(p) \cdot W_{k4}(p) = 212,57 \cdot \frac{(0,133 p+1)(0,019 p+1)(0,014 p+1)^{2}}{p(0,021 p+1)(5,293 \cdot 10^{-3} p+1)^{3}}.$$

3. Исследование устойчивости и качества САУ

3.1 Определение запасов устойчивости

Структура САУ с корректирующим устройством:

Определяем передаточную функцию разомкнутой систему с

корректирующим устройством:

$$\begin{split} W_p(p) &= W_{_{\mathit{ky}}}(p) \cdot W_{_{\mathit{H}^{\mathit{H}}}}(p) = 212,\!57 \cdot \frac{(0,\!133\,p\!+\!1)(0,\!019\,p\!+\!1)(0,\!014\,p\!+\!1)^2}{p(0,\!021\,p\!+\!1)(5,\!293 \cdot 10^{-3}\,p\!+\!1)^3} \times \\ &\times \frac{1,\!334(0,\!021\,p\!+\!1)}{p \cdot (0,\!019\,p\!+\!1)(1,\!995 \cdot 10^{-4}\,p^2\!+\!0,\!019\,p\!+\!1)} = 283,\!57 \cdot \frac{(0,\!133\,p\!+\!1)(0,\!014\,p\!+\!1)^2}{p^2(1,\!995 \cdot 10^{-4}\,p^2\!+\!0,\!019\,p\!+\!1)(5,\!293 \cdot 10^{-3}\,p\!+\!1)^3}. \end{split}$$

Рассчитываем аналитические ЛАЧХ и ЛФЧХ скорректированной САУ:

$$\begin{split} L_{_{CK}}(\omega) &= -20 \lg \left(\frac{\omega^2}{283,57}\right) + 20 \lg \left(\sqrt{1 + (0,133\,\omega)^2}\right) + 40 \lg \left(\sqrt{1 + (0,014\,\omega)^2}\right) - \\ &- 20 \lg \left(\sqrt{(1 - 1,995 \cdot 10^{-4}\,\omega^2)^2 + (0,019\,\omega)^2}\right) - 60 \lg \left(\sqrt{1 + (5,293 \cdot 10^{-3}\,\omega)^2}\right), \ \partial B \ ; \\ & \phi_{_{CK}}(\omega) &= -\pi + arctg \left(0,133\,\omega\right) + 2 \text{arctg} \left(0,014\,\omega\right) - arctg \left(\frac{0,019\,\omega}{1 - 1,995 \cdot 10^{-4}\,\omega^2}\right) - 3 \ arctg \left(0,00529\,\omega\right), \ pa\partial \ . \end{split}$$

Рассчитанные значения $L_{ck}(\omega)$ и $\phi_{ck}(\omega)$ сведены в таблице. Графики этих функций построены на рисунке 3.

ω, c ⁻¹	0,2	0,5	1	5	10	20	50	100	200	500
L _{ck} (ω), дБ	77	61,1	49,1	22,7	13,6	6,6	-0,4	-8,86	-23,3	-49,5
$\varphi_{ck}(\omega)$, рад	-3,12	-3,08	-3,016	-2,59	-2,28	-2,07	-2,05	-2,36	-3,06	-1,07

Рис. 3

По графикам определяем:

коэффициент запаса по усилению: $\Delta L=8 \ \partial B$;

коэффициент запаса по фазе: $\Delta \varphi = 0.856 \ pa\partial = 49^{\circ}$.

3.2 Построение реакции системы на возмущающее ступенчатое воздействие

Передаточная функция замкнутой САУ по возмущающему воздействию:

$$W_f(p) = \frac{W_{n^4}(p)/W_1(p)}{1+W_p(p)} = \frac{\frac{1,334(0,021\,p+1)}{p\cdot(0,019\,p+1)(1,995\cdot10^{-4}\,p^2+0,019\,p+1)}}{\frac{1,667}{2\cdot10^{-4}\,p^2+2\cdot10^{-2}\,p+1}} = \frac{\frac{0,8(0,021\,p+1)(2\cdot10^{-4}\,p^2+2\cdot10^{-2}\,p+1)}{p\cdot(0,019\,p+1)(1,995\cdot10^{-4}\,p^2+0,019\,p+1)}}{\frac{1+283,57\cdot\frac{0}{p^2(1,995\cdot10^{-4}\,p^2+2\cdot10^{-2}\,p+1)}}{p^2(1,995\cdot10^{-4}\,p^2+2\cdot10^{-2}\,p+1)}} = \frac{\frac{0,8(0,021\,p+1)(2\cdot10^{-4}\,p^2+2\cdot10^{-2}\,p+1)}{p\cdot(0,019\,p+1)(1,995\cdot10^{-4}\,p^2+0,019\,p+1)}}{\frac{0,8(0,021\,p+1)(2\cdot10^{-4}\,p^2+2\cdot10^{-2}\,p+1)}{p^2(1,995\cdot10^{-3}\,p+1)^3}} = \frac{\frac{0,8(0,021\,p+1)(0,014\,p+1)^2}{p^2(1,995\cdot10^{-4}\,p^2+0,019\,p+1)(5,293\cdot10^{-3}\,p+1)^3}}{\frac{0,8\,p\,(0,021\,p+1)(2\cdot10^{-4}\,p^2+2\cdot10^{-2}\,p+1)(5,293\cdot10^{-3}\,p+1)^3}{p^2\cdot(0,019\,p+1)(1,995\cdot10^{-4}\,p^2+0,019\,p+1)(5,293\cdot10^{-3}\,p+1)^3}} = \frac{\frac{0,8\,p\,(0,021\,p+1)(2\cdot10^{-4}\,p^2+2\cdot10^{-2}\,p+1)}{p^2\cdot(0,019\,p+1)(1,995\cdot10^{-4}\,p^2+0,019\,p+1)(5,293\cdot10^{-3}\,p+1)^3}}{\frac{p^2\cdot(0,019\,p+1)(1,995\cdot10^{-4}\,p^2+0,019\,p+1)(5,293\cdot10^{-3}\,p+1)^3}{p^2\cdot(0,019\,p+1)(1,995\cdot10^{-4}\,p^2+0,019\,p+1)(5,293\cdot10^{-3}\,p+1)^3+2,83,57\cdot(0,019\,p+1)(0,133\,p+1)(0,014\,p+1)^2}} = \frac{4,983\cdot10^{-13}\,p^7+3,56\cdot10^{-10}\,p^6+9,99\cdot10^{-8}\,p^5+1,411\cdot p^4+1,084\cdot10^{-3}\,p^3+4,55\cdot10^{-2}\,p^2+0,8\,p}}{\frac{5,62\cdot10^{-13}\,p^8+4,017\cdot10^{-10}\,p^7+1,13\cdot10^{-7}\,p^6+1,603\cdot10^{-5}\,p^5+1,39\cdot10^{-3}\,p^4+8,24\cdot10^{-2}\,p^3+2,98\,p^2+51,04\,p+283,57}}.$$

Подставляем в $W_f(p)$ аргумент $p=j\omega$ и получаем выражение $A\Phi YX$ замкнутой системы по возмущению:

$$\begin{split} W_f(j\omega) &= \frac{4,983 \cdot 10^{-13} (j\omega)^7 + 3,56 \cdot 10^{-10} (j\omega)^6 + 9,99 \cdot 10^{-8} (j\omega)^5 + 1,411 \cdot (j\omega)^4 + 1,084 \cdot 10^{-3} (j\omega)^3 + 4,55 \cdot 10^{-2} (j\omega)^2 + 0,8 (j\omega)}{5,62 \cdot 10^{-13} (j\omega)^8 + 4,017 \cdot 10^{-10} (j\omega)^7 + 1,13 \cdot 10^{-7} (j\omega)^6 + 1,603 \cdot 10^{-5} (j\omega)^5 + 1,39 \cdot 10^{-3} (j\omega)^4 + 8,24 \cdot 10^{-2} (j\omega)^3 + 2,98 (j\omega)^2 + 51,04 (j\omega) + 283,57} \\ &= \frac{(-3,56 \cdot 10^{-10} \omega^6 + 1,411 \cdot \omega^4 - 4,55 \cdot 10^{-2} \omega^2) + j (-4,983 \cdot 10^{-13} \omega^7 + 9,99 \cdot 10^{-8} \omega^5 - 1,084 \cdot 10^{-3} \omega^3 + 0,8 \omega)}{X(\omega) + jY(\omega)}, \end{split}$$

где:

$$X(\omega) = 5,62 \cdot 10^{-13} \omega^8 - 1,13 \cdot 10^{-7} \omega^6 + 1,39 \cdot 10^{-3} j \omega^4 - 2,98 \omega^2 + 51,04 (j \omega) + 283,57;$$

$$Y(\omega) = -4,017 \cdot 10^{-10} \omega^7 + 1,603 \cdot 10^{-5} \omega^5 - 8,24 \cdot 10^{-2} \omega^3 + 51,04 \omega.$$

Выделяем вещественную часть от $W_f(j\omega)$, получаем вещественную частотную характеристику:

$$\begin{split} W_f(j\,\omega) = & \frac{\left(-3.56\cdot10^{^{-10}}\,\omega^6 + 1.411\cdot\omega^4 - 4.55\cdot10^{^{-2}}\,\omega^2\right) + j\left(-4.983\cdot10^{^{-13}}\,\omega^7 + 9.99\cdot10^{^{-8}}\,\omega^5 - 1.084\cdot10^{^{-3}}\,\omega^3 + 0.8\,\omega\right)}{X(\omega) + j\,Y(\omega)} \cdot \frac{X(\omega) - j\,Y(\omega)}{X(\omega) - j\,Y(\omega)} = P\left(\omega\right) + j\,Q\left(\omega\right). \\ P_f(\omega) = & \frac{\left(-3.56\cdot10^{^{-10}}\,\omega^6 + 1.411\cdot\omega^4 - 4.55\cdot10^{^{-2}}\,\omega^2\right) \cdot X(\omega) + \left(-4.983\cdot10^{^{-13}}\,\omega^7 + 9.99\cdot10^{^{-8}}\,\omega^5 - 1.084\cdot10^{^{-3}}\,\omega^3 + 0.8\,\omega\right) \cdot Y(\omega)}{X^2(\omega) + Y^2(\omega)}. \end{split}$$

Рассчитываем значения и строим график вещественной частотной характеристики:

ω, c ⁻¹	Χ(ω)	Υ(ω)	$P_{\rm f}(\omega)$
0	283,57	0	0
3	256,87	150,9	2,849·10 ⁻³
10	-0,562	429,6	0,016
15	-317,71	499,67	0,02063
25	-1063,47	142,82	0,02176
35	-1488,62	-929,8	0,02102
50	-229,14	-3050,38	0,02185
60	2378,1	-3391,4	0,02206
80	9424,9	6011	0,00622
100	2021,08	42870,85	-0,00062
150	-506187,9	260736,23	-0,00065

График ВЧХ САУ по возмущению изображен на рисунке 4.

Переходный процесс рассчитываем методом трапецеидальных характеристик. Представляем график $P_f(\omega)$ суммой трапеций. Параметры трапеций:

1)
$$H_1 = -0.021875$$
; $\omega_{dl} = 0$; $\omega_{cl} = 14.5 c^{-1}$; $\frac{\omega_{dl}}{\omega_{cl}} = 0$;

2)
$$H_2 = -0.000625$$
; $\omega_{d2} = 49.5 c^{-1}$; $\omega_{c2} = 61.5 c^{-1}$; $\frac{\omega_{d2}}{\omega_{c2}} = 0.792$;

3)
$$H_3 = 0.0225$$
; $\omega_{d3} = 61.5 c^{-1}$; $\omega_{c3} = 90 c^{-1}$; $\frac{\omega_{d3}}{\omega_{c3}} = 0.694$.

По таблице типовых трапецеидальных характеристик рассчитываем и строим график для каждой трапеции:

$$y_i(t) = H_i \cdot h_{v.i}(t), t = \frac{\tau}{\omega_{c.i}}.$$

Сложением ординат графиков $y_i(t)$ получаем кривую переходного процесса $y_f(t)$ (рис. 5).

Трапеция 1			Tpai	пеция 2	Трапеция 3		
τ	t, c	\mathbf{y}_1	t, c	y_2	t, c	\mathbf{y}_3	
0	0	0	0	0	0	0	
1	0,069	-0,00678	0,016	-0,00034	0,011	0,01134	
2	0,138	-0,01251	0,032	-0,0006	0,022	0,02066	
3	0,207	-0,01652	0,048	-0,00073	0,033	0,02536	
4	0,276	-0,01875	0,064	-0,00072	0,044	0,02606	
6	0,414	-0,01978	0,096	-0,00059	0,067	0,02212	
8	0,552	-0,01991	0,128	-0,00059	0,089	0,02095	
10	0,69	-0,02054	0,16	-0,00065	0,111	0,02291	
12	0,828	-0,02078	0,192	-0,00063	0,133	0,02309	
14	0,966	-0,02083	0,224	-0,0006	0,156	0,02219	
16	1,103	-0,02102	0,256	-0,00062	0,178	0,02225	
20	1,379	-0,02115	0,32	-0,00062	0,222	0,02255	

3.3 Построение реакции системы на задающее ступенчатое воздействие

Передаточная функция замкнутой САУ по управляющему воздействию:

$$W_{y}(p) = \frac{W_{p}(p)}{1 + W_{p}(p)} = \frac{\frac{283,57 \cdot (0,133 \ p + 1)(0,014 \ p + 1)^{2}}{p^{2}(1,995 \cdot 10^{-4} p^{2} + 0,019 \ p + 1)(5,293 \cdot 10^{-3} p + 1)^{3}}}{1 + \frac{283,57 \cdot (0,133 \ p + 1)(0,014 \ p + 1)^{2}}{p^{2}(1,995 \cdot 10^{-4} p^{2} + 0,019 \ p + 1)(5,293 \cdot 10^{-3} \ p + 1)^{3}}} = \frac{283,57 \cdot (0,133 \ p + 1)(0,014 \ p + 1)^{2}}{p^{2}(1,995 \cdot 10^{-4} p^{2} + 0,019 \ p + 1)(5,293 \cdot 10^{-3} \ p + 1)^{3} + 283,57 \cdot (0,133 \ p + 1)(0,014 \ p + 1)^{2}} = \frac{7,392 \cdot 10^{-3} \ p^{3} + 1,112 \ p^{2} + 45,66 \ p + 283,57}{2,958 \cdot 10^{-11} \ p^{7} + 1,96 \cdot 10^{-8} \ p^{6} + 5,85 \cdot 10^{-4} \ p^{5} + 5,85 \cdot 10^{-4} \ p^{4} + 4,22 \cdot 10^{-2} \ p^{3} + 2,112 \ p^{2} + 45,66 \ p + 283,57}.$$

Подставляем в ПФ замкнутой САУ аргумент р=јω:

ТОДСТАВЛЯЕМ В ПФ ЗАМКНУТОЙ САУ артумент р—ј
$$\omega$$
 .
$$W(j\omega) = \frac{7,392 \cdot 10^{-3} (j\omega)^2 + 1112 (j\omega)^2 + 45,66 (j\omega) + 283,57}{2,958 \cdot 10^{-11} (j\omega)^7 + 1,96 \cdot 10^{-8} (j\omega)^6 + 4,913 \cdot 10^{-6} (j\omega)^5 + 5,85 \cdot 10^{-4} (j\omega)^4 + 4,227 \cdot 10^{-2} (j\omega)^3 + 2,112 (j\omega)^2 + 45,66 (j\omega) + 283,57} = \frac{-1,112 \omega^2 + 283,57 + j (-7,392 \cdot 10^{-3} \omega^3 + 45,66 \omega)}{X(\omega) + jY(\omega)} ;$$

$$X(\omega) = -1,96 \cdot 10^{-8} \omega^6 + 5,85 \cdot 10^{-4} \omega^4 - 2,112 \omega^2 + 283,57;$$

$$Y(\omega) = -2,958 \cdot 10^{-11} \omega^7 + 4,913 \cdot 10^{-6} \omega^5 - 4,227 \cdot 10^{-2} \omega^3 + 45,66 \omega$$

Выделяем действительную часть $W_y(j\omega)$, получаем вещественную частотную характеристику:

$$\begin{split} W_{y}(j\,\omega) &= \frac{-1,112\,\omega^{2} + 283,57 + j(-7,392 \cdot 10^{-3}\,\omega^{3} + 45,66\,\omega)}{X(\omega) + j\,Y(\omega)} \cdot \frac{X(\omega) - Y(\omega)}{X(\omega) - j\,Y(\omega)} = P_{y}(\omega) + j\,Q_{y}(\omega); \\ P_{y}(\omega) &= \frac{(-1,112\,\omega^{2} + 283,57) \cdot X(\omega) + (-7,392 \cdot 10^{-3}\,\omega^{3} + 45,66\,\omega) \cdot Y(\omega)}{X^{2}(\omega) + Y^{2}(\omega)}. \end{split}$$

Рассчитываем значения и строим график ВЧХ (рис. 6):

ω , c ⁻¹	X(w)	Υ(ω)	$P_{y}(\omega)$	
0	283,57	0	1	
3	264,6	135,8	1,028	
10	78,24	414,77	1,121	
15	-162,13	545,9	1,094	
25	-812,35	528,7	0.933	
35	-1460,9	41,7	0,762	
50	-1643,6	-1488,9	0,423	11.
60	-647,1	-2653,6	-0,084	410
80	5607,1	-2511,5	-1	aid, ru
100	18107,6	8467,2	-0.551	(O.)
150	25970	186726,8	-0,113	
		shar	SI.	

Рис. 6

Переходный процесс рассчитываем методом трапецеидальных характеристик. Представляем график функции $P_{\nu}(\omega)$ суммой трапеций. Параметры трапеций:

1)
$$H_1 = -0.12$$
; $\omega_{dl} = 0$; $\omega_{cl} = 9.8 c^{-1}$; $\frac{\omega_{dl}}{\omega_{cl}} = 0$;

2)
$$H_2 = -0.52$$
; $\omega_{d2} = 15.5 c^{-1}$; $\omega_{c2} = 49 c^{-1}$; $\frac{\omega_{d2}}{\omega_{c2}} = 0.316$;

3)
$$H_3 = 1,61$$
; $\omega_{d3} = 49 c^{-1}$; $\omega_{c3} = 76 c^{-1}$; $\frac{\omega_{d3}}{\omega_{c3}} = 0,645$.

4)
$$H_3 = -1.02$$
; $\omega_{d3} = 82 c^{-1}$; $\omega_{c3} = 124.5 c^{-1}$; $\frac{\omega_{d3}}{\omega_{c3}} = 0.659$.

По таблице типовых трапецеидальных характеристик рассчитываем и строим график для каждой трапеции:

$$y_i(t) = H_i \cdot h_{v.i}(t), t = \frac{\tau}{\omega_{c.i}}.$$

Сложением ординат графиков у пролучаем кривую переходного процесса $y_y(t)$ (рис. 7).

Трапеция 1			Трапе	еция 같	Трапеция 3		Трапеция 4	
τ	t, c	\mathbf{y}_1	t, c	De	t, c	y ₃	t, c	y ₄
0	0	0	0		0	0	0	0
1	0,102	-0,037	0,02	0,212	0,013	0,808	0,008	-0,517
2	0,204	-0,069	0,041	0,357	0,026	1,443	0,016	-0,928
3	0,306	-0,091	0,061	0,501	0,039	1,794	0,024	-1,142
4	0,408	-0,103	0,082	0,555	0,053	1,86	0,032	-1,184
6	0,612	-0,108	0,122	0,557	0,079	1,61	0,048	-1,028
8	0,816	-0,109	0,163	0,535	0,105	1,501	0,064	-0,958
10	1,02	-0,113	0,204	0,534	0,132	1,616	0,08	-1,03
12	1,224	-0,114	0,245	0,526	0,158	1,645	0,096	-1,049
14	1,43	-0,114	0,286	0,517	0,184	1,605	0,112	-1,02
16	1,63	-0,115	0,327	0,518	0,211	1,596	0,129	-1,018
20	2,04	-0,116	0,408	0,52	0,263	1,6	0,161	-1,017

По графику переходного процесса определяем:

перерегулирование: $\sigma = (1,32-1)\cdot 100\% = 32\%$;

время регулирования: t_p =0,18 c.

4. Исследование точности системы

4.2 Вычисление систематической ошибки

Передаточная функция замкнутой системы по ошибке относительно задающего воздействия:

$$\begin{split} W_e(p) &= \frac{1}{1 + W_p(p)} = \frac{1}{1 + \frac{283,57 \cdot (0,133 \, p + 1)(0,014 \, p + 1)^2}{p^2 (1,995 \cdot 10^{-4} \, p^2 + 0,019 \, p + 1)(5,293 \cdot 10^{-3} \, p + 1)^3} = \\ &= \frac{p^2 (1,995 \cdot 10^{-4} \, p^2 + 0,019 \, p + 1)(5,293 \cdot 10^{-3} \, p + 1)^3}{p^2 (1,995 \cdot 10^{-4} \, p^2 + 0,019 \, p + 1)(5,293 \cdot 10^{-3} \, p + 1)^3 + 283,57 \cdot (0,133 \, p + 1)(0,014 \, p + 1)^2} = \\ &= \frac{2,958 \cdot 10^{-11} \, p^7 + 1,96 \cdot 10^{-8} \, p^6 + 4,913 \cdot 10^{-6} \, p^5 + 5,85 \cdot 10^{-4} \, p^4 + 3,488 \cdot 10^{-2} \, p^3 + p^2}{2,958 \cdot 10^{-11} \, p^7 + 1,96 \cdot 10^{-8} \, p^6 + 5,85 \cdot 10^{-4} \, p^5 + 5,85 \cdot 10^{-4} \, p^4 + 4,227 \cdot 10^{-2} \, p^3 + 2,112 \, p^2 + 45,66 \, p + 283,57} \end{split}$$

Определяем коэффициенты ошибок, равные коэффициентам разложения $W_e(p)$ по степеням p. Для этого разделим полином в числителе $W_e(p)$ на полином в знаменателе:

наменателе:
$$W_e(p) \equiv 3,526 \cdot 10^{-3} \, p^2 - 4,448 \cdot 10^{-4} \, p^3 + 4,741 \cdot 10^{-5} \, p^4 - 4,83 \cdot 10^{-6} \, p^5 + \dots$$

Коэффициенты ошибок C_0 = C_1 =0 — система имеет астатизм второго порядка.

$$C_2 = 3,526 \cdot 10^{-3}$$
; $C_3 = -4,448 \cdot 10^{-4}$; $C_4 = 4,741 \cdot 10^{-5}$; $C_5 = -4,83 \cdot 10^{-6}$.

Ошибка САУ изменяется согласно выражению:

$$e(t) = \frac{C_2}{2!} \cdot \frac{d^2 x}{dt^2} + \frac{C_3}{3!} \cdot \frac{d^3 x}{dt^3} + \frac{C_4}{4!} \cdot \frac{d^4 x}{dt^4} + \frac{C_5}{5!} \cdot \frac{d^5 x}{dt^5} + \dots =$$

$$= 1,763 \cdot 10^{-3} \cdot \frac{d^2 x}{dt^2} - 7,413 \cdot 10^{-5} \cdot \frac{d^3 x}{dt^3} + 1,975 \cdot 10^{-6} \cdot \frac{d^4 x}{dt^4} - 4,025 \cdot 10^{-8} \cdot \frac{d^5 x}{dt^5} + \dots$$

где x(t) - управляющее воздействие.

4.2 Вычисление степени влияния помехи

На входе системы действует регулярная помеха:

$$N(t) = 0.01 \sin \omega t$$
; $\omega = 100 c^{-1}$.

Рассчитываем пульсации угловой скорости на выходе системы, используя частотную передаточную функцию из п. 3.3:

$$W_{y}(j\omega) = \frac{-1,112\omega^{2} + 283,57 + j(-7,392 \cdot 10^{-3}\omega^{3} + 45,66\omega)}{X(\omega) + jY(\omega)}.$$

Вычисляем значение $W_y(j\omega)$ при $\omega = 100$ ^{с-1}:

$$\begin{split} X(\omega) &= -1,96\cdot 10^{-8}\,100^6 + 5,85\cdot 10^{-4}\cdot 100^4 - 2,112\cdot 100^2 + 283,57 = 18107,57\,;\\ Y(\omega) &= -2,958\cdot 10^{-11}\cdot 100^7 + 4,913\cdot 10^{-6}\,100^5 - 4,227\cdot 10^{-2}\,100^3 + 45,66\cdot 100 = 8467,2\,;\\ W_y(j\,100) &= \frac{-1,112\cdot 100^2 + 283,57 + j\left(-7,392\cdot 10^{-3}\cdot 100^3 + 45,66\cdot 100\right)}{18107,57 + j\,8467,2} \cdot \frac{18107,57 - j\,8467,2}{18107,57 - j\,8467,2} = \\ &= \frac{\left(-1,112\cdot 100^2 + 283,57 + j\left(-7,392\cdot 10^{-3}\cdot 100^3 + 45,66\cdot 100\right)\right)\cdot \left(18107,57 - j\,8467,2\right)}{18107,57^2 + 8467,2^2} = -0,551 + j\,0,101 = \\ &= 0,56\cdot e^{j2,959} = 0,56\cdot e^{j169,6^\circ}. \end{split}$$

shaman dan didi Амплитуда пульсаций угловой скорости на выходе системы:

$$\delta_{\omega} = 0.01 \cdot |W_{\nu}(j100)| = 0.01 \cdot 0.56 = 0.0056 \ c^{-1}.$$

5. Расчет параметров регулятора скорости

Корректирующее устройство состоит интегратора четырех ИЗ И дифференцирующих цепочек. Схема корректирующего устройства собирается на операционных усилителях (ОУ). Используем операционные усилители типа К(КР) 140УД8 с полевыми транзисторами на входе. Большое входное сопротивление ОУ В RC-цепях резисторы возможность использовать сопротивлениями и, соответственно, менее габаритные конденсаторы меньшей емкости.

Схема интегратора на ОУ:

Постоянную времени интегратора $\tau = RC$ выбираем из условия $\tau > 10 \, T_{max}$, где T_{max} — максимальное время системы, соответствующее частоте ω_4 .

Принимаем: $\tau = 2c$; R = 1 MO M.

Емкость конденсатора:

$$C = \frac{\tau}{R} = \frac{2}{10^6} = 2 \cdot 10^{-6} \Phi = 2 \text{ мк}\Phi.$$

На единичной частоте коэффициент передачи интегратора равен: $K_{unm} = \frac{1}{\tau \omega} = \frac{1}{3}$.

Поскольку интегратор инвертирует сигнал, включаем последователь с ним инвертирующий усилитель с коэффициентом усиления равны 3. Тогда на единичной частоте: $K_{unn} \cdot K_{unn} = 1$. Схема инвертирующего усилителя:

Коэффициент передачи усилителя:

$$K_{uns} = \frac{R_2}{R_1} = 3$$
.

Выбираем: $R_1 = 68 \, \kappa O M$; $R_2 = 3.68 = 204 \, \kappa O M$.

Коэффициент

передачи

всего

корректирующего устройства равен:

$$K_{ky} = 212,57 \quad (\pi. 2.2).$$

Коэффициент передачи всего устройства распределяем по четырем дифференцирующим каскадам:

$$K_{\partial \kappa} = \sqrt[4]{K_{ky}} = \sqrt[4]{212,57} = 3,818.$$

Схема дифференцирующих каскадов.

Передаточная функция каскада:

$$W_{\partial \kappa}(p) = \frac{R_1 + R_3}{R_1} \cdot \frac{C p \cdot \left(\frac{R_1 R_2}{R_1 + R_2} + R_3\right) + 1}{p R_2 C + 1}.$$

Коэффициент усиления каскада:

$$K_{\partial \kappa} = \frac{R_1 + R_3}{R_1} = 1 + \frac{R_3}{R_1}.$$

Постоянны времени $T_{\scriptscriptstyle H}$ и $T_{\scriptscriptstyle B}$ соответствующие началу и концу подъема ЛАЧХ каскада на 20 дб/дек:

$$T_{H} = \left(\frac{R_{1}R_{2}}{R_{1}+R_{2}} + R_{3}\right) \cdot C; \quad \omega_{H} = \frac{1}{T_{H}};$$

$$T_{e} = R_{2}C; \quad \omega_{e} = \frac{1}{T_{L}}.$$

Рассчитываем элементы дифференцирующих каскадов. Для всех каскадов

коэффициент передачи:

$$K_{\kappa\partial} = 1 + \frac{R_3}{R_1} = 3.818$$
.

Выбираем: $R_1 = 33 \kappa O_M$.

Тогда: $R_3 = R_1 \cdot (K_{\kappa \partial} - 1) = 33 \cdot 2,818 = 93 \ \kappa O_M$.

1. Первый дифференцирующий каскад:

$$T_{_{H}}$$
=0,133 c ; $T_{_{\theta}}$ =0,021 c ; $C = \frac{T_{_{\theta}}}{R_{_{2}}}$; $\left(\frac{R_{_{1}}R_{_{2}}}{R_{_{1}}+R_{_{2}}}+R_{_{3}}\right)\cdot\frac{T_{_{\theta}}}{R_{_{2}}}=T_{_{H}}$; $\left(\frac{33\,R_{_{2}}}{33+R_{_{2}}}+93\right)\cdot\frac{0,021}{R_{_{2}}}=0,133\Rightarrow R_{_{2}}=16,4\ \kappa Om$. Стандартное значение $R_{_{2}}=16$ кОм. $C = \frac{0,021}{16\cdot 10^{3}}=1,313\cdot 10^{-6}\ \Phi=1,313\ \text{мк}\Phi\approx 1.3\ \text{мк}\Phi$. 2. Второй дифференцирующий каскад: $T_{_{H}}=0,00529\ c$; $T_{_{\theta}}=0,019\ c$;

Стандартное значение $R_2 = 16 \text{ кОм.}$

$$C = \frac{0.021}{16 \cdot 10^3} = 1.313 \cdot 10^{-6} \Phi = 1.313 \text{ мк}\Phi \approx 1.3 \text{ мк}\Phi$$
.

2. Второй дифференцирующий каскад:

$$T_{H} = 0,00529 \ c; \ T_{e} = 0,019 \ c;$$

$$C = \frac{T_{e}}{R_{2}}; \ \left(\frac{R_{1}R_{2}}{R_{1} + R_{2}} + R_{2}\right) \cdot \frac{T_{e}}{R_{2}} = T_{H};$$

$$\left(\frac{33 R_{2}}{33 + R_{2}} + 93\right) \cdot \frac{0,019}{R_{2}} = 0,00529 \Rightarrow R_{2} = 444,1 \ \text{KOM}.$$

Стандартное значение $R_2 = 440 \text{ кOm.}$

$$C = \frac{0.019}{440 \cdot 10^3} = 43.18 \cdot 10^{-9} \ \Phi \approx 43 \ \text{H}\Phi.$$

3. Третий и четвертый дифференцирующие каскады:

$$T_{\scriptscriptstyle H} = 0,00529 \ c; \ T_{\scriptscriptstyle g} = 0,014 \ c;$$

$$C = \frac{T_{\scriptscriptstyle g}}{R_{\scriptscriptstyle 2}}; \ \left(\frac{R_{\scriptscriptstyle 1}R_{\scriptscriptstyle 2}}{R_{\scriptscriptstyle 1} + R_{\scriptscriptstyle 2}} + R_{\scriptscriptstyle 3}\right) \cdot \frac{T_{\scriptscriptstyle g}}{R_{\scriptscriptstyle 2}} = T_{\scriptscriptstyle H};$$

$$\left(\frac{33\,R_{\scriptscriptstyle 2}}{33 + R_{\scriptscriptstyle 2}} + 93\right) \cdot \frac{0,014}{R_{\scriptscriptstyle 2}} = 0,00529 \Rightarrow R_{\scriptscriptstyle 2} = 325,2 \ \kappa Om.$$

Стандартное значение $R_2 = 330 \text{ кОм.}$

$$C = \frac{0.014}{330 \cdot 10^3} = 42.4 \cdot 10^{-9} \ \Phi \approx 42 \ \text{H}\Phi$$
.

Принципиальная схема регулятора изображена на рисунке 8.

28

shaman@aid.ru

Рис. 8

СПИСОК ЛИТЕРАТУРЫ

- 1. Федоренко А. А., Иванчура В. И. Теория автоматического управления. Красноярск, КГТУ, 2001.
- 2. Бесекерский В. А., Попов А. П. Теория систем автоматического регулирования. М., «Наука», 1975.
- 3. Сборник задач по теории автоматического регулирования и управления. /Под ред. В. А. Бесекерского. М., «Наука», 1969.

shaman@aid.nu