СОДЕРЖАНИЕ

Задание и исходные данные	<u>3</u>
Расчет параметров элементов САУ	
Определение передаточных функций САУ по управлению, возмущению и ошибке	6
Определение качества работы САУ по ее частотным характеристикам в разомкнутом виде	<u>7</u>
Определение параметров автоколебаний САУ при введении нелинейности	10
Проверка устойчивости замкнутой САУ	10
Построение кривой D-разбиения плоскости определенного параметра САУ	
Синтез корректирующего устройства при помощи ЛЧХ нескорректированной САУ	13
Определение приближенного вида переходной функции по методу Солодовникова	
Определение квадратичной интегральной оценки качества регулирования скорректированной САУ	20
Описание математической модели скорректированной САУ в пространстве состояний	21
Определение установившей ошибки по возмущению в скорректированной САУ	
ПЕРЕЧЕНЬ ССЫЛОК	25

Задание и исходные данные

В соответствии с выбранной функциональной схемой линейной САУ (рис. 1) необходимо:

- 1. На функциональной схеме расчленить систему на типовые элементы (звенья), найти передаточные функции каждого звена и рассчитать их параметры. Составить структурную схему САУ с указанием входной, выходной величины и возмущающего воздействия, а также промежуточных координат. Указать место установки будущего корректирующего устройства. Привести краткое описание работы САУ.
- 2. Пользуясь правилами преобразования структурных схем найти передаточную функцию разомкнутой САУ, а также замкнутых САУ по управляющему и возмущающему воздействиям и по ошибке от этих воздействий. Сравнить между собой характеристические уравнения замкнутой и разомкнутой систем и указать их общность и различие.
- 3. Построить а.ф.х., л.а.х., л.ф.х. разомкнутой нескорректированной системы и дать заключение о качестве работы замкнутой системы (точность регулирования, быстродействие, перерегулирование, полоса пропускания и т. д.).
- 4. Определить возможные частоту и амплитуду автоколебаний при введении в нескорректированную САУ нелинейности, тип которой приведен на рисунке 2.
- 5. Для нескорректированной системы проверить устойчивость ее работы методом, соответствующим варианту задания (таб. 1). Определить критический коэффициент усиления системы $K_{\kappa p}$.
- 6. Построить границу устойчивости по методу D-разбиения плоскости параметров, указанных в таблице №3.
- 7. Используя логарифмические частотные характеристики определить тип и параметры корректирующего устройства, обеспечивающего при подаче на вход САУ управляющего воздействия $g(t)=\mathbf{l}(t)$ и f(t)=0 для статических систем или $g(t)=\mathbf{l}(t)$ хt и f(t)=0 для астатических систем заданные показатели качества, указанные в таблице \mathbb{N}_{2} 1.
- 8. По вещественной частотной характеристике P(ω) замкнутой скорректированной системы построить график переходного процесса h(t) при единичном ступенчатом воздействии (метод В. В. Солодовникова). Определить показатели качества работы САУ и сравнить их с заданными.
- 9. Оценить качество работы замкнутой скорректированной системы по управляющему воздействию с использованием квадратичной интегральной оценки I₂.
- 10. Составить математическую модель скорректированной линейной системы и получить переходный процесс на выходе CAУ с использованием ЭВМ при отработке входного воздействия g(t)=l(t) для статических CAУ, а для астатических- g(t)=l(t) и g(t)=l(t)хt. Определить показатели качества регулирования и сравнить их с заданными и полученными в пункте 8.
- 11. Определить установившуюся ошибку регулирования в скорректированной системе при подаче возмущающего воздействия $f(t)=\mathbf{1}(t)$.

Исходные данные для выполнения работы приведены в таблицах 1 и 2.

Таблица 1						
		Показатели качества регулирования			йности	верки вость
САУ	$\mathbf{\epsilon}_{\mathrm{c}_{\mathrm{T}}}$	\mathcal{E}_{ck}	t _{per} , c	$\sigma_{ ext{nep}}, \%$	Тип нелинейности	Метод проверки на устойчивость
Рис.1		0,02	5,6	22	Рис .2	Гурвица

Таблица 2						
Кд	Тм	K_{np}	T_{np}	К _у	Koc	D- разбиение
0,8	0,9	9	0,09	3	0,12	T_{M}

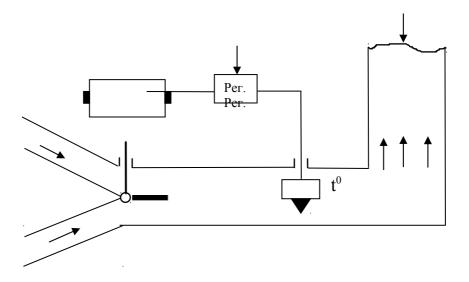


Рисунок 1. Функциональная система системы автоматического управления температурной зерносушилки.

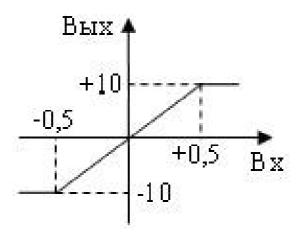


Рисунок 2. Характеристика нелинейности САУ.

Для САУ температурой зерносушилки (рис.1) параметры объекта регулирования принимаются следующие: K_{OP} =15+40 = 55; T_{OP} =30+40 = 70.

Расчет параметров элементов САУ

Исследуемая САУ состоит из следующих элементов:

- объект регулирования, представляющий собой заслонку для регулирования потока теплого воздуха в сушильной камере;
- исполнительный орган, коим является двигатель постоянного тока (ДПТ) заслонки каналов холодного и горячего воздуха;
- регулятор, состоящий из источника питания двигателя со сравнивающим устройством, усилителем, корректирующим устройство и регулятором напряжения;
- датчик выходной величины (температуры воздуха), представляющий собой термопару или другой термочувствительный элемент;

Передаточная функция объекта управления имеет вид [1]:

$$W_{OP}(p) = \frac{K_{OP}}{T_{OP}p + 1} = \frac{55}{70p + 1}$$

Упрощенная передаточная функция двигателя постоянного тока с выходной величиной, равной углу поворота заслонки, имеет вид:

$$W_{\text{ДПТ}}(p) = \frac{K_{\text{Д}}}{(T_{\text{M}}p+1)p} = \frac{0.8}{(0.9p+1)p}$$

Передаточная функция регулятора напряжения двигателя может быть представлена апериодическим звеном первого порядка [2]:

$$W_{\Pi P}(p) = \frac{K_{\Pi P}}{T_{\Pi P}p + 1} = \frac{9}{0,09p + 1}$$
.

Усилитель регулятора представлен в виде пропорционального звена с коэффициентом передачи K_y :

$$W_y(p) = K_y = 3$$

Элемент отрицательной обратной связи представляет собой пропорциональное звено (безынерционный усилитель) и характеризуется постоянным коэффициентом передачи $K_{\rm OC}$:

$$W_{oc}(p) = K_{oc} = 0.12$$

Сравнивающее устройство регулятора представляет собой компаратор, выполненный на операционном усилителе либо регулируемый резистивный мост [1].

Структурная схема исходной САУ изображена на рисунке 3. Структура не содержит корректирующих звеньев, которые возможны к применению при последующем анализе динамических свойств и системы и ее качественных показателей. Корректирующее устройство может бить установлено в изменяемой части САУ, а именно в регулируемом источнике питания двигателя (регуляторе), а на структурной схеме его можно поместить между блоками K_y и $W_{PH}(p)$, либо же блок K_y может быть заменен на корректирующее звено с соответствующими динамическими.

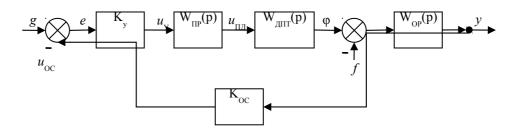


Рисунок 3. Исходная структурная схема исследуемой САУ

Приведенная на рисунках 1 и 3 САУ функционирует следующим образом. Величина g, пропорциональная желаемой температуре воздуха в сушильной камере, подается на вход системы. Поскольку в этот момент времени сигнал обратной связи отсутствует, то сигнал ошибки e максимален и равен задающему сигналу g. Усилитель K_y усиливает его и формирует

сигнал u_y , пропорциональный углу регулирования регулятора напряжения $W_{\Pi P}(p)$. На выходе регулятора напряжения появляется некоторое значение напряжения питания исполнительного двигателя $W_{\Pi\Pi}(p)$. Двигатель приходит во вращение и начинает перемещать заслонку воздуховодов. Сигнал φ , пропорциональный углу поворота заслонки, воздействует на объект регулирования (поток теплого воздуха в сушильной камере), регулируя температуру последнего, за счет уменьшения или увеличения потока холодного (либо горячего) воздуха из соответствующего канала. Сигнал y, пропорциональный температуре воздуха в камере, снимается датчиком и с коэффициентом пропорциональности K_{OC} (- u_{OC}) подается на вход системы в устройство сравнения (1-й сумматор на структурной схеме). После этого сигнал ошибки e начинает стремиться у нулю, пока стремится к величине g сигнал u_{OC} . Исполнительный двигатель остановится, когда уровень температуры (y) достигнет заданного (g). Если на систему оказывает возмущающее воздействие сигнал f, то CAУ будет отрабатывать задающий сигнал с некоторой ошибкой регулирования. Источником сигнала f может служить любой фактор внутри зерносушилки (постоянного или временного характера), уменьшающий объем воздуха необходимой температуры в сушильной камере.

Определение передаточных функций САУ по управлению, возмущению и ошибке

Передаточная функция по управлению для разомкнутой САУ имеет вид:

$$\begin{split} W_{g}(p) &= K_{y} \cdot W_{\Pi P}(p) \cdot W_{Z\Pi T}(p) \cdot W_{OP}(p) = K_{y} \cdot \frac{K_{\Pi P}}{T_{\Pi P} p + 1} \cdot \frac{K_{Z}}{T_{M} p + 1} \cdot \frac{1}{p} \cdot \frac{K_{OP}}{T_{OP} p + 1} = \\ &= \frac{K_{y} \cdot K_{\Pi P} \cdot K_{Z} \cdot K_{OP}}{p(T_{\Pi P} p + 1)(T_{M} p + 1)(T_{OP} p + 1)} = \frac{K}{T_{\Pi P} T_{M} T_{OP} p^{4} + [(T_{M} + T_{\Pi P}) \cdot T_{OP} + T_{\Pi P} T_{M}] p^{3} + (T_{\Pi P} + T_{M} + T_{OP}) p^{2} + (T_{M} + T_{M}) p^{2}} + \frac{K}{T_{M} T_{OP} p^{4} + [(T_{M} + T_{M}) \cdot T_{OP} + T_{M}] p^{3} + (T_{M} + T_{M}) p^{2}} + \frac{K}{T_{M} T_{OP} p^{4}} + \frac{K}{T_{M} T_{OP} p$$

где $\kappa = \kappa_{\mathcal{N}} \kappa_{\mathcal{M}} \kappa_{\mathcal{A}} \kappa_{\mathcal{O}}$ - общий коэффициент усиления разомкнутой системы. С учетом коэффициента передачи обратной связи:

$$W_g'(p) = K_{OC}W_g(p) = \frac{K \cdot K_{OC}}{T_{\Pi P}T_MT_{OP}p^4 + [(T_M + T_{\Pi P}) \cdot T_{OP} + T_{\Pi P}T_M]p^3 + (T_{\Pi P} + T_M + T_{OP})p^2 + p} \quad .$$

Передаточная функция по управлению для замкнутой САУ имеет вид:

$$H_{g}(p) = \frac{W_{g}(p)}{1 + W_{g}'(p)} = \frac{K}{T_{\Pi P}T_{M}T_{OP}p^{4} + \left[\left(T_{M} + T_{\Pi P}\right) \cdot T_{OP} + T_{\Pi P}T_{M}\right]p^{3} + \left(T_{\Pi P} + T_{M} + T_{OP}\right)p^{2} + p + K \cdot K_{OC}}.$$

Передаточная функция по возмущению для разомкнутой системы имеет вид:

$$W_f(p) = W_{OP}(p) = \frac{K_{OP}}{T_{OP}p + 1}$$

Передаточная функция по возмущению для замкнутой САУ имеет вид:

$$\begin{split} H_{f}(p) &= \frac{W_{OP}(p)}{1 + K_{OC} \cdot K_{y} \cdot W_{PH}(p) \cdot W_{ZHT}(p) \cdot W_{OP}(p)} = \frac{\frac{K_{OP}}{T_{OP}p + 1}}{1 + K_{OC} \cdot K_{y} \cdot \frac{K_{IIP}}{T_{IIP}p + 1} \cdot \frac{K_{Z}}{T_{IIP}p + 1} \cdot \frac{1}{p} \cdot \frac{K_{OP}}{T_{OP}p + 1}} = \\ &= \frac{K_{OP} \cdot (T_{IIP}p + 1)(T_{M}p + 1)p}{(T_{OP}p + 1)(T_{IIP}p + 1)(T_{M}p + 1)p + K_{OC}K} = \\ &= \frac{K_{OP}T_{IIP}T_{M}p^{3} + (K_{OP}T_{M} + K_{OP}T_{IIP})p^{2} + K_{OP}p}{T_{IIP}T_{M}T_{OP}p^{4} + [(T_{M} + T_{IIP}) \cdot T_{OP} + T_{IIP}T_{M}]p^{3} + (T_{IIP} + T_{M} + T_{OP})p^{2} + p + K \cdot K_{OC}}. \end{split}$$

Передаточная функция замкнутой САУ по ошибке управления имеет вид [3]:

$$\begin{split} &H_{eg}(p) = &1 - K_{OC}H_g(p) = \\ &= \frac{\left[T_{\Pi P}T_{M}T_{OP}p^{3} + \left(T_{M}T_{OP} + T_{\Pi P}T_{OP} + T_{\Pi P}T_{M}\right)p^{2} + \left(T_{\Pi P} + T_{M} + T_{OP}\right)p + 1\right]p}{T_{\Pi P}T_{M}T_{OP}p^{4} + \left(T_{M}T_{OP} + T_{\Pi P}T_{OP} + T_{\Pi P}T_{M}\right)p^{3} + \left(T_{\Pi P} + T_{M} + T_{OP}\right)p^{2} + p + K_{OC}K}. \end{split}$$

Взаимосвязь между сигналом возмущения и ошибкой возмущения в замкнутой САУ имеет вид:

$$-f = (1 + K_{oc}W_g(p)) \cdot e_f$$

откуда передаточная функция по ошибке возмущения в замкнутой САУ будет иметь следующее выражение:

$$H_{ef}(p) = -\frac{e_f}{f} = \frac{1}{1 + K_{OC}W_g(p)} = \frac{T_{\Pi P}T_MT_{OP}p^4 + [(T_M + T_{\Pi P}) \cdot T_{OP} + T_{\Pi P}T_M]p^3 + (T_{\Pi P} + T_M + T_{OP})p^2}{T_{\Pi P}T_MT_{OP}p^4 + [(T_M + T_{\Pi P}) \cdot T_{OP} + T_{\Pi P}T_M]p^3 + (T_{\Pi P} + T_M + T_{OP})p^2 + p^2}$$

Характеристические полинома разомкнутой и замкнутой САУ имеют вид:

$$\begin{split} Q(p) = & T_{\Pi P} T_{M} T_{OP} p^{4} + \left[\left(T_{M} + T_{\Pi P} \right) \cdot T_{OP} + T_{\Pi P} T_{M} \right] p^{3} + \left(T_{\Pi P} + T_{M} + T_{OP} \right) p^{2} + p \\ D(p) = & Q(p) + K \cdot K_{OC}. \end{split}$$

Характеристические уравнения разомкнутой и замкнутой систем соответственно имеет вид:

$$Q(p) = 0;$$

 $D(p) = 0.$

Очевидно что полином D включает в себя полином Q и они имеют одинаковый порядок и 4 корня в соответствующих характеристических уравнениях. Полином Q не имеет свободного члена, поэтому его характеристическое уравнение имеет один нулевой корень, что однозначно свидетельствует о том, что САУ в разомкнутом состоянии будет иметь бесконечное изменение выходной величины y при подаче сигнала управления постоянной величины. Поскольку характеристическое уравнение замкнутой системы включает в себя все параметры системы, то очевидно, что каждый из них будет влиять на устойчивость САУ в замкнутом состоянии. При заданных значениях параметров звеньев САУ вектор корней характеристического уравнения будет содержать следующие значения:

$$\begin{bmatrix}
-11,09 \\
-1,884 \\
0,369 - j1,033 \\
0,369 + j1,033
\end{bmatrix}$$

Очевидно, что САУ неустойчива в замкнутом состоянии, поскольку имеет пару комплексно сопряженных корней с положительными вещественными частями.

Определение качества работы САУ по ее частотным характеристикам в разомкнутом виде

Амплитудно-фазовая характеристика ($A\Phi X$) исходной системы в разомкнутом виде определяется из соответствующей передаточной функции заменой аргумента " :

$$\begin{split} W_g'(p = j\omega) &= \frac{K \cdot K_{OC}}{p(T_{\Pi P}p + 1)(T_M p + 1)(T_{OP}p + 1)} = \frac{K \cdot K_{OC}}{j\omega(1 + j\omega T_{\Pi P})(1 + j\omega T_M)(1 + j\omega T_{OP})} = \\ &= \frac{K \cdot K_{OC}}{T_{\Pi P}T_M T_{OP}\omega^4 - (T_{\Pi P} + T_M + T_{OP})\omega^2 + j[-(T_{\Pi P}T_M + T_{\Pi P}T_{OP} + T_M T_{OP})\omega^3 + \omega]} = \\ &= \frac{1188 \cdot 0,12}{5,67\omega^4 - 70,99\omega^2 + j(\omega - 69,381\omega^3)} = \frac{1188 \cdot 0,12 \cdot [5,67\omega^4 - 70,99\omega^2 - j(\omega - 69,381\omega^3)]}{[5,67\omega^4 - 70,99\omega^2]^2 + [\omega - 69,381\omega^3]^2} = \\ &= \frac{1188 \cdot 0,12 \cdot (5,67\omega^4 - 70,99\omega^2)}{[5,67\omega^4 - 70,99\omega^2]^2 + [\omega - 69,381\omega^3]^2} = \\ &= U(\omega) + jV(\omega); \end{split}$$

$$U(\omega) = \frac{1188 \cdot 0.12 \cdot (5.67 \omega^4 - 70.99 \omega^2)}{\left[5.67 \omega^4 - 70.99 \omega^2\right]^2 + \left[\omega - 69.381 \omega^3\right]^2};$$
$$V(\omega) = \frac{-1188 \cdot 0.12 \cdot \left[\omega - 69.381 \omega^3\right]}{\left[5.67 \omega^4 - 70.99 \omega^2\right]^2 + \left[\omega - 69.381 \omega^3\right]^2}.$$

Построение функций $U(\omega)$ и $V(\omega)$ в комплексной плоскости дает $A\Phi X$ разомкнутой системы. График $A\Phi X$ для области положительных частот представлен на рисунке 4.

Логарифмические частотные характеристики (ЛЧХ) разомкнутой САУ могут быть построены на основании их аналитических выражений следующего вида:

$$L(\boldsymbol{\omega}) = -20 \log \left(\frac{\boldsymbol{\omega}}{K \cdot K_{OC}} \right) - 20 \log \sqrt{1 + \boldsymbol{\omega}^2 T_{OP}^2} - 20 \log \sqrt{1 + \boldsymbol{\omega}^2 T_{M}^2} - 20 \log \sqrt{1 + \boldsymbol{\omega}^2 T_{IIP}^2};$$

$$\boldsymbol{\varphi}(\boldsymbol{\omega}) = -\frac{\boldsymbol{\pi}}{2} - \arctan \boldsymbol{\omega} \boldsymbol{T}_{OP} - \arctan \boldsymbol{\omega} \boldsymbol{T}_{M} - \arctan \boldsymbol{\omega} \boldsymbol{T}_{IIP}.$$

Асимптотическая ЛАЧХ может быть построена на основании базовой ЛАЧХ, путем приведения последней к виду:

$$L_a(\boldsymbol{\omega}) = -20\log\left(\frac{\boldsymbol{\omega}}{K\cdot K_{oc}}\right) - 20\log\boldsymbol{\omega}_{OP}\cdot(\boldsymbol{\omega}>\boldsymbol{\omega}) - 20\log\boldsymbol{\omega}_{M}\cdot(\boldsymbol{\omega}>\boldsymbol{\omega}) - 20\log\boldsymbol{\omega}_{M}\cdot(\boldsymbol{\omega}>\boldsymbol{\omega}) - 20\log\boldsymbol{\omega}_{HP}\cdot(\boldsymbol{\omega}>\boldsymbol{\omega}) \ ,$$
 где
$$\boldsymbol{\omega} = \frac{1}{T_{OP}} = \frac{1}{70} = 0,014\ c^{-1};\ \boldsymbol{\omega} = \frac{1}{T_{M}} = \frac{1}{0,9} = 1,111\ c^{-1};\ \boldsymbol{\omega} = \frac{1}{0,09} = 1,111\ c^{-1} - \text{частоты}$$
 сопряжения асимптотической ЛАЧХ.

Графики ЛАЧХ и ЛФЧХ приведены на рисунках 5 и 6 соответственно.

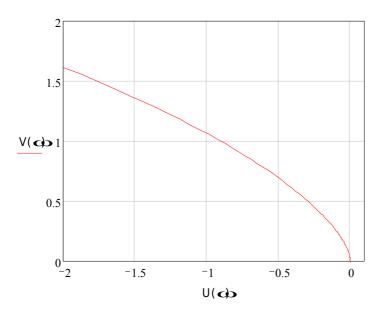


Рисунок 4. АФХ разомкнутой САУ при 0≤ω<∞

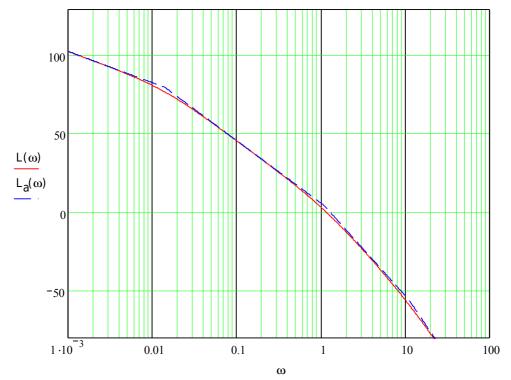


Рисунок 5. Логарифмическая амплитудно-частотная характеристика разомкнутой САУ; $L(\omega)$ – аналитическая; $L_{\rm a}(\omega)$ – асимптотическая

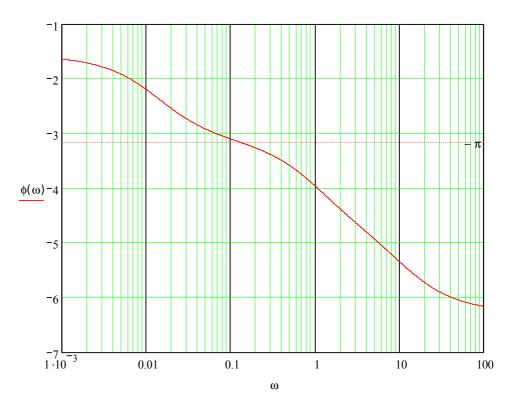


Рисунок 6. Логарифмическая фазово-частотная характеристика разомкнутой САУ

Поскольку на частоте ω_{π} , при которой ЛФЧХ равна $-\pi$, ЛАЧХ принимает положительное значение, то исследуемая САУ является неустойчивой в замкнутом состоянии. Таким образом, определение качественных показателей системы становится бессмысленным.

Определение параметров автоколебаний САУ при введении нелинейности

При введении в линейную САУ нелинейного элемента на ее выходе могут возникнуть устойчивые гармонические колебания с определенной амплитудой A_0 и частотой ω_0 [2-4]. Для определения амплитуды и частоты автоколебаний на выходе САУ с нелинейным элементом применяют метод Гольдфарба [4], применительно САУ с линеаризованным нелинейным элементом. Для линеаризованного нелинейного элемента (рис. 2) характерна частотная передаточная функция вида:

$$W_{_{9K}}(A) = \frac{2k}{\pi} \left(\arcsin \frac{C}{A} + \frac{C}{A} \sqrt{1 + \left(\frac{C}{A}\right)^2} \right) ,$$

где $k = \frac{B}{C} = \frac{10}{0.5} = 20$ - коэффициент усиления линейного эквивалента; - уровень входного сигнала, при котором наступает стабилизация выходного на уровне - .

Нормированная характеристика линейного элемента, эквивалентного нелинейному определяется выражением:

$$M_{{\scriptscriptstyle H}0}\!\!\left(\!rac{A}{C}\!
ight)\!\!=\!\!-rac{k}{W_{{\scriptscriptstyle 2K}}\!\left(A
ight)}$$
 .

В таблице 1 приведены расчеты значения функции $M_{\mu\nu}(A/C)$ для различных значений A, а на рисунке 7 изображены графики функций $K - W_s(A/C)$ и $M_{\mu\nu}(A/C)$. Автоколебания в САУ с нелинейным элементом были бы возможны, если бы обе, изображенные на рисунке 7, функции пересекались. В текущем случае таковые отсутствуют.

Таблица 1					
Α	$W_{\scriptscriptstyle \mathfrak{IK}}\!(A)$	$M_{H0}(A/C)$			
1	20,78 5	-0,962			
2	17,33 6	-1,154			
3	16,25	-1,231			
4	15,71 4	-1,273			
6	15,18 1	-1,317			
8	14,91 5	-1,341			

Проверка устойчивости замкнутой САУ

Воспользуемся критерием Гурвица для проверки замкнутой САУ на устойчивость [2-4]. Для этого определим главный определитель Гурвица и все его диагональные миноры, воспользовавшись коэффициентами полинома D(p):

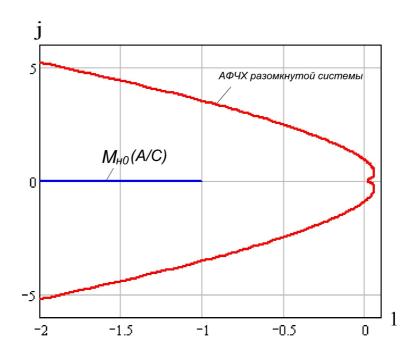


Рисунок 7. К определению амплитуды и частоты автоколебаний в САУ при введении нелинейного элемента

$$D(p) = T_{\Pi P} T_{M} T_{OP} p^{4} + [(T_{M} + T_{\Pi P}) \cdot T_{OP} + T_{\Pi P} T_{M}] p^{3} + (T_{\Pi P} + T_{M} + T_{OP}) p^{2} + p + K \cdot K_{OC};$$

$$\Delta_{4} = \begin{vmatrix} (T_{M} + T_{\Pi P}) \cdot T_{OP} + T_{\Pi P} T_{M} & 1 & 0 & 0 \\ T_{\Pi P} T_{M} T_{OP} & T_{\Pi P} + T_{M} + T_{OP} & K \cdot K_{OC} & 0 \\ 0 & (T_{M} + T_{\Pi P}) \cdot T_{OP} + T_{\Pi P} T_{M} & 1 & 0 \\ 0 & T_{\Pi P} T_{M} T_{OP} & T_{\Pi P} + T_{M} + T_{OP} & K \cdot K_{OC} \end{vmatrix} =$$

$$= \begin{vmatrix} 69,381 & 1 & 0 & 0 \\ 5,67 & 70,99 & 142,56 & 0 \\ 0 & 69,381 & 1 & 0 \\ 0 & 5,67 & 70,99 & 142,56 \end{vmatrix} = -6,813 \times 10^{5}.$$

Поскольку главный определитель Гурвица отрицательный, то можно сразу сделать вывод о неустойчивости замкнутой САУ, без нахождения диагональных миноров.

Критический коэффициент усиления системы можно определить путем решения уравнения $^{\Delta_1=0}$ относительно K или путем решения более простого уравнения $^{\Delta_1=0}$, решение которого также зависит от K:

$$\Delta_{3}(K_{\wp}) = \begin{vmatrix} (T_{M} + T_{\Pi P}) \cdot T_{OP} + T_{\Pi P} T_{M} & 1 & 0 \\ T_{\Pi P} T_{M} T_{OP} & T_{\Pi P} + T_{M} + T_{OP} & K_{\wp} \cdot K_{OC} \\ 0 & (T_{M} + T_{\Pi P}) \cdot T_{OP} + T_{\Pi P} T_{M} & 1 \end{vmatrix} = \begin{vmatrix} 69,381 & 1 & 0 \\ 5,67 & 70,99 & 0,12K_{\wp} \\ 0 & 69,381 & 1 \end{vmatrix}$$

решение которого дает значение критического коэффициента усиления $\kappa_{\text{---}} = 8.51677$. Остальные диагональные миноры не зависят от K и положительны:

$$\Delta_{2} = \begin{vmatrix} (T_{M} + T_{\Pi P}) \cdot T_{OP} + T_{\Pi P} T_{M} & 1 \\ T_{\Pi P} T_{M} T_{OP} & T_{\Pi P} + T_{M} + T_{OP} \end{vmatrix} = \begin{vmatrix} 69,381 & 1 \\ 5,67 & 70,99 \end{vmatrix} = 4,92 \times 10^{3};$$

$$\Delta_{1} = (T_{M} + T_{\Pi P}) \cdot T_{OP} + T_{\Pi P} T_{M} = 69,381.$$

Построение кривой D-разбиения плоскости определенного параметра САУ

Построим кривую D-разбиения в плоскости постоянной времени $T_{\rm M}$ и определим область устойчивости CAУ. Для указанной задачи воспользуемся характеристическим уравнением замкнутой CAУ, произведя замену аргумента

$$D(j \, \alpha) = T_{\Pi P} T_{M} T_{OP} \cdot (j \, \alpha)^{4} + [(T_{M} + T_{\Pi P}) \cdot T_{OP} + T_{\Pi P} T_{M}] \cdot (j \, \alpha)^{3} + (T_{\Pi P} + T_{M} + T_{OP}) \cdot (j \, \alpha)^{2} + j \, \alpha) + K \cdot K_{OC} = 0$$

Выделим в вышеприведенном уравнении слагаемые независимые от $T_{\rm M}$ в полином $N({\rm j}\omega)$, а зависимые – в полином $M({\rm j}\omega)$:

$$D(j\omega) = N(j\omega) + T_{M} \cdot M(j\omega) = 0;$$

$$N(j\omega) = K \cdot K_{OC} - (T_{\Pi P} + T_{OP}) \cdot \omega^{2} - j(T_{\Pi P} T_{OP} \cdot \omega^{3} - \omega);$$

$$M(j\omega) = T_{\Pi P} T_{OP} \omega^{4} - \omega^{2} - j(T_{OP} + T_{\Pi P}) \omega^{3}.$$

Выразим $T_{\rm M}$ из уравнения $D_{\rm M}$

$$T_{M} = -\frac{N(j\omega)}{M(j\omega)} = -\frac{K \cdot K_{OC} - (T_{\Pi P} + T_{OP}) \cdot \omega^{2} - j(T_{\Pi P} T_{OP} \cdot \omega^{3} - \omega)}{T_{\Pi P} T_{OP} \omega^{4} - \omega^{2} - j(T_{OP} + T_{\Pi P}) \omega^{3}} = U(\omega) + jV(\omega);$$

$$U(\omega) = \frac{K \cdot K_{OC} - K \cdot K_{OC} \cdot T_{PH} T_{OP} \omega^{2}}{\omega^{2} \cdot \left[T_{IP}^{2} T_{OP}^{2} \omega^{4} + \left[T_{IP}^{2} + T_{OP}^{2} \right] \omega^{2} + 1 \right]};$$

$$V(\omega) = \frac{T_{\Pi P}^{2} T_{OP}^{2} \omega^{5} + \left(T_{\Pi P}^{2} + T_{OP}^{2}\right) \cdot \omega^{3} + \left(1 - K \cdot K_{OC} \cdot T_{PH} - K \cdot K_{OC} \cdot T_{OP}\right) \cdot \omega}{\omega^{2} \cdot \left[T_{\Pi P}^{2} T_{OP}^{2} \omega^{4} + \left(T_{\Pi P}^{2} + T_{OP}^{2}\right) \omega^{2} + 1\right]}.$$

Кривая D-разбиения плоскости параметра $T_{\rm M}$, со штриховкой в сторону области значений устойчивой САУ, приведена на рисунке 8. Поскольку постоянная времени $T_{\rm M}$ величина вещественная, то из всех значений, попадающих в область устойчивости имеют значение только те, что лежат на вещественной оси.

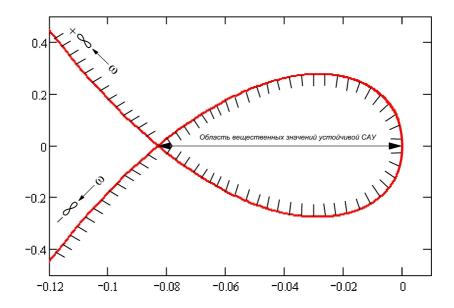


Рисунок 8. Кривая D-разбиения в плоскости постоянной времени T_{M}

Очевидно, что при заданном $T_{\rm M}=0.9$ с CAУ не будет устойчивой, поскольку это значение не лежит на прямой вещественных чисел в области устойчивости. Кроме того, анализируя кривую D-разбиения можно сделать вывод, что устойчивость системы практически не зависит от параметра $T_{\rm M}$ при неизменных остальных. При отрицательном значении $T_{\rm M}$ система априори не будет устойчивой, поскольку нарушается базовое условие устойчивости: положительность всех коэффициентов характеристического уравнения замкнутой CAУ.

Синтез корректирующего устройства при помощи ЛЧХ нескорректированной САУ

Заданием требуется обеспечить слежение с заданной точностью от задающего воздействия g(t) = vt (v= const = 1), при котором установившаяся скоростная ошибка системы будет равна $\varepsilon_{c\kappa} = 0.02$. Таким образом система должна иметь астатизм первого порядка. У такой САУ низкочастотная область ЛАЧХ проходит точку с координатами (1 c^{-1} , $20logK_{TD}$) где

$$K_{mp} = \frac{1}{\mathcal{E}_{c\kappa}} = \frac{1}{0,02} = 50$$
 - требуемый коэффициент усиления САУ в разомкнутом виде.

Выражение низкочастотной асимптоты желаемой ЛАЧХ имеет вид:

$$L_1(\omega) = -20 \log \left(\frac{\omega}{K_{mp}} \right)$$
.

Выражение среднечастотной асимптоты имеет вид:

$$L_2(\omega) = 20\log(\omega T_x)$$

где T_x определяется из уравнения $L_2(\mathcal{Q}_x) = 0$; — частота среза желаемой ЛАЧХ, определяемая по диаграмме Солодовникова (рис. 9), из которой имеем, при

$$t_{pec} = 22\%; t_{pec} = 5.6 c$$
 , $t_{pec} = \frac{2.92\pi}{t_{pec}} = \frac{2.92\pi}{5.6} = 1.638 c^{-1}$. При такой частоте среза $t_x = 0.61 c$

. Верхняя точка излома среднечастотной асимптоты L_2 соответствует уровню +16 дБ, а нижняя - -14 дБ, что рекомендуется для САУ с высокими требованиями к качеству регулирования [1]. Частоты излома среднечастотной асимптоты сверху и снизу могут быть определены из соответсвующих уравнений:

$$16 = L_2(\boldsymbol{\omega}_{u1});$$

$$-14 = L_2(\boldsymbol{\omega}_{u2}),$$

решение которых дает: $= 0.2596 c^{-1}$; $= 2.21 c^{-1}$.

Сопряжение прямых L_1 и L_2 осуществим отрезком с наклоном -40 дб/дек. Частота сопряжения $\omega_{\text{н0}}$ этой линии с низкочастотной асимптотой может быть определена из системы уравнений:

$$\begin{cases} 16 = -40 \log |\omega_{u1} \cdot T|; \\ L_1 |\omega_{u0}| = -40 \log |\omega_{u0} \cdot T|, \end{cases}$$

ОТКУДа $\sim 30.85 \cdot 10^{-2} c^{-1}$.

выражение:

Для упрощения корректирующего устройства (КУ), сопряжение среднечастотной асимптоты с высокочастотной может быть осуществлено на частоте $\omega = \frac{1}{T_{IIP}} = 11,11$ с $^{-1}$, поскольку ω_{u2} и ω_3 практически близки. Наклон высокочастотной асимптоты принимаем -60 дб/дек. Таким образом, асимптотическая желаемая ЛАЧХ САУ будет иметь следующее

$$L_{\infty}(\boldsymbol{\omega}) = -20\log\frac{\boldsymbol{\omega}}{K_{mn}} - 20\log\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_0} \cdot (\boldsymbol{\omega} > \boldsymbol{\omega}_0) + 20\log\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_0} \cdot (\boldsymbol{\omega} > \boldsymbol{\omega}_1) - 40\log\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}} \cdot (\boldsymbol{\omega} > \boldsymbol{\omega}) \quad ,$$

А ЛФЧХ скорректированной САУ будет иметь следующее выражение:

$$\phi(\alpha) = \frac{\pi}{2} - \arctan \frac{\omega}{\omega_0} + \arctan \frac{\omega}{\omega_1} - 2\arctan \frac{\omega}{\omega}$$

Выражение асимптотической ЛАЧХ корректирующего устройства имеет вид:

$$L_{_{\!\mathit{K}\!\mathit{y}}}\!\left(\boldsymbol{\omega}\!\right)\!=\!\!L_{_{\!\mathcal{M}}}\!\left(\boldsymbol{\omega}\!\right)\!-\!L_{_{\!\mathit{a}}}\!\left(\boldsymbol{\omega}\!\right)\!=\!\!20\log\!\frac{1}{K_{_{\!\mathit{y}}}}\!-\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{\!\!\!0}}\right)\!+\!20\log\!\left(\!\frac{\boldsymbol{\omega}}{\boldsymbol{$$

Таким образом, выражение передаточной функции корректирующего устройства будет иметь вид:

$$W_{KY}(p) = \frac{(T_{OP}p+1)(T_{u1}p+1)(T_{M}p+1)}{K_{v}(T_{u0}p+1)(T_{DP}p+1)^{2}}$$

THE
$$T_{u0} = 1/20^2/0.85 = 17.57 \ c; T_{u1} = 1/20 = 1/0.2596 = 3.852 \ c$$

На рисунке 9 изображены ЛАЧХ исходной и скорректированной САУ, а также корректирующего устройства. На рисунке 10 приведены ЛФЧХ исходной и скорректированной САУ. Из графиков ЛФЧХ видно, что значение частоты перехода фазы через $-\pi$ увеличилось и значение амплитуды при нем (см. график ЛАЧХ) отрицательно:

$$a_2 = a_3 = 10,857 c^{-1}$$

Запас по амплитуде и фазе в скорректированной САУ равен:

$$\Delta L = |L_{xc}(\omega_{\pi})| = -16,427 \ \partial E;$$

$$\Delta \varphi = \left| -\pi - \varphi_{\kappa}(\omega_{\pi}) \right| \cdot \frac{180}{\pi} = 64.518^{\circ}.$$

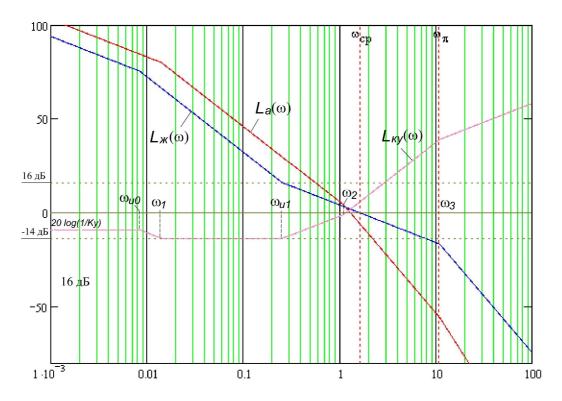


Рисунок 9. Графики ЛАЧХ исходной и скорректированной САУ, а также ЛАЯХ корректирующего устройства.

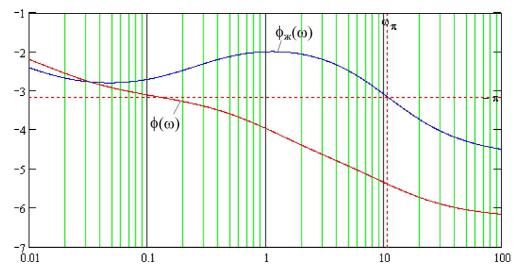


Рисунок 10. Графики ЛФЧХ исходной и скорректированной САУ.

Используя выражение передаточной функции последовательного корректирующего устройства, спроектируем его схему на основе одной интегрирующее цепи постоянного тока и двух дифференцирующих фазоопережающих цепей с усилением при помощи операционных усилителей (ОУ). Таким образом, передаточная функция КУ представляется в виде произведения передаточных функций вышеуказанных цепей, входящих в состав КУ:

 $W_{\kappa_{\mathcal{Y}}}(p) = \mathcal{W}_1(p) - \mathcal{W}_2(p) - \mathcal{W}_3(p)$

где $W_1(p)$ - $W_3(p)$ — передаточные функции составляющих КУ цепей. Общая принципиальная схема КУ представлена на рисунке 11.

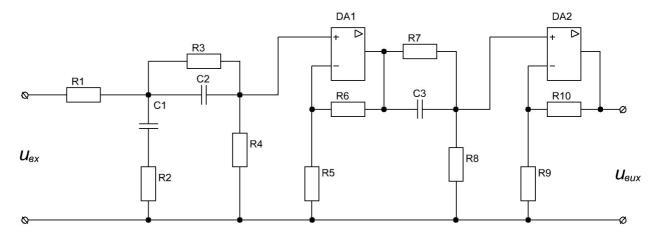


Рисунок 11. Электрическая схема корректирующего устройства

Входная интегрирующая RC-цепь KУ описывается передаточной функцией вида:

$$W_1(p) = \frac{T_{OP}p + 1}{T_{u0}p + 1} ,$$

постоянные времени которой связаны с параметрами схемы КУ следующими соотношениями:

$$T_{u0} = C1 \cdot (R1 + R2);$$

$$T_{OP} = C1 \cdot R2.$$

Приняв стандартное значение сопротивления R_2 на уровне 470 кОм, получим:

$$C1 = \frac{T_{OP}}{R2} = \frac{70}{470000} = 148.9 \cdot 10^{-6} \ \Phi \approx 150 \ \text{мк}\Phi;$$

$$R1 = \frac{T_{u0}}{C1} - R2 = \frac{117.57}{150 \cdot 10^{-6}} - 470000 = 313.7 \cdot 10^{3} \ \text{Ом} \approx 316 \text{кОм}.$$

Первая дифференцирующая фозоопережающая цепочка описывается следующей передаточной функцией:

$$W_2(p) = k2 \frac{T_{u1}p + 1}{T_{IIP}p + 1}$$
,

коэффициент передачи и постоянные времени которой связаны с параметрами схемы КУ следующими соотношениями:

$$k2 = \frac{R4}{R3 + R4};$$

$$T_{u1} = R3 \cdot C2;$$

$$T_{IIP} = k2 \cdot T_{u1}.$$

Для сопротивления нагрузки цепи *R*4 со стандартным значением 4,7 кОм, получим:

$$\begin{split} k2 &= \frac{T_{\Pi P}}{T_{u1}} = \frac{0,09}{3,852} = 0,023; \\ R3 &= \frac{R4}{k2} - R4 = \frac{4700}{0,023} - 4700 = 196,4 \cdot 10^3 \ \textit{Om} \approx 196 \ \textit{kOm}; \\ C2 &= \frac{T_{u1}}{R3} = \frac{3,852}{196000} = 19,65 \cdot 10^{-6} \ \textit{\Phi} \approx 20 \ \textit{MKP}. \end{split}$$

Поскольку первая дифференцирующая цепочка вносит существенное ослабление, то для выравнивания уровня сигнала после нее необходимо применить чувствительный неинвертирующий ОУ с коэффициентом усиления (1/6-2 1/49.023 1-42.8), параметры которого соотносятся следующим образом:

$$\frac{1}{k2} = 1 + \frac{R6}{R5} \quad .$$

Для сопротивления обратной связи *R*6 со стандартным значением 20 кОм, получим:

$$R5 = \frac{R6 \cdot k2}{1 - k2} = \frac{20000 \cdot 0,023}{1 - 0,023} = 478,5 \ OM = 487 \ OM$$
.

Параметры второй дифференцирующей цепи находятся аналогичным образом:

$$W_3(p) = k3 \frac{T_M p + 1}{T_{IIP} p + 1};$$

$$R8 = 10 \kappa O_M$$

$$k3 = \frac{T_{IIP}}{T_{M}} = \frac{0.09}{0.9} = 0.1;$$

$$R7 = \frac{R8}{k3} - R8 = \frac{10000}{0.1} - 10000 = 90000 \ O_M \approx 91 \ \kappa O_M;$$

$$C3 = \frac{T_M}{R7} = \frac{0.9}{91000} = 9.89 \cdot 10^{-6} \, \Phi \approx 10 \, \text{MK} \Phi.$$

Коэффициент усиления выходного ОУ должен быть таковым, чтобы КУ вносило общее ослабление в САУ уровня 1/Ку = 1/3 = 0.333 :

$$\frac{1}{k3 \cdot K_y} = \frac{1}{0.1 \cdot 3} = 3.333$$

Для сопротивления обратной связи R10 со стандартным значением 20 кОм, получим:

$$R9 = \frac{R10 \cdot k3 \cdot K_{y}}{1 - k3 \cdot K_{y}} = \frac{20000 \cdot 0.1 \cdot 3}{1 - 0.3} = 8.57 \cdot 10^{3} \ Om \approx 8.66 \ \kappa Om$$

Определение приближенного вида переходной функции по методу Солодовникова

Выражение передаточной функции скорректированной замкнутой САУ имеет вид:

$$H_{g,\kappa}(p) = \frac{W_{\kappa y}(p) \cdot W_g(p)}{1 + W_g'(p)} \tag{1}$$

Аналитическое выражение вещественной характеристики от комплексной частотной передаточной функции скорректированной замкнутой САУ имеет вид:

$$P(\boldsymbol{\omega}) = \operatorname{Re} \left[H_{g,\kappa}(j\boldsymbol{\omega}) \right] = \operatorname{Re} \left[\frac{W_{\kappa y}(j\boldsymbol{\omega}) \cdot W_g(j\boldsymbol{\omega})}{1 + K_{OC} \cdot W_g(j\boldsymbol{\omega})} \right] .$$

Для определения функции $P(\omega)$ и построение ее графика воспользуемся ЭВМ и ПО Mathcad с соответствующим алгоритмом:

$$\mathsf{H}_{\mathsf{g},\kappa}(\mathsf{p}) \coloneqq \frac{\mathsf{W}_{\kappa\mathsf{y}}(\mathsf{p}) \cdot \mathsf{W}_{\mathsf{g}}(\mathsf{p})}{1 + \mathsf{K}_{\mathsf{OC}}(\mathsf{W}_{\kappa\mathsf{y}}(\mathsf{p}) \cdot \mathsf{W}_{\mathsf{g}}(\mathsf{p}))}$$

 $P(x) := Re(H_{g.K}(j-x))$

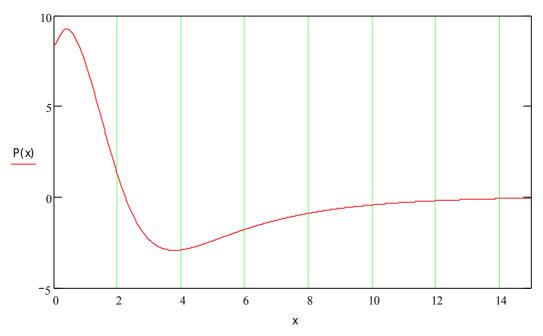


Рисунок 12. График ВЧХ скорректированной замкнутой САУ; x — частотный аргумент.

Представленный на рисунке 12 график ВЧХ разбиваем на трапециидальные составляющие, как показано на рисунке 13.

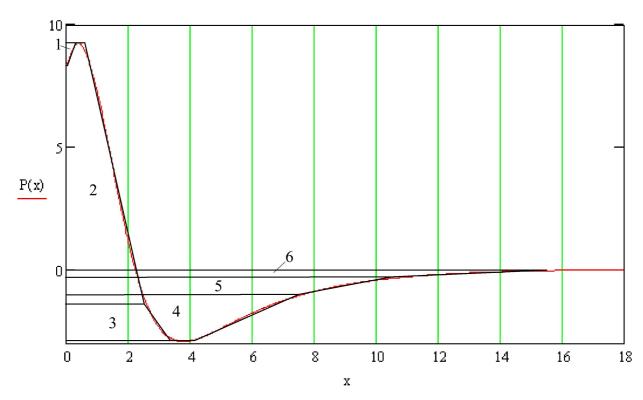


Рисунок 13. К определению переходной функции САУ по методу Солодовникова.

Уровни, относительные наклоны и частоты среза трапеций с рисунка 13 рассчитаны и сведены в таблицу 1.

Таблица 1				
№	P(0)	$\omega_{\rm p}/\omega_{\rm cp}$	$\omega_{\mathrm{cp}}, \ \mathrm{c}^{-1}$	
1	-0,923	0,195	0,319	
2	10,62 9	0,241	2,521	
3	1,473	0,75	3,362	
4	-1,866	0,555	7,486	
5	-0,717	0,716	10,451	
6	-0,295	0,676	15,455	

На рисунке 14 приведены графики h-функций для соответствующих значений, округленных к табличным [3], относительного наклона трапеций и рассчитанных значений P(0) из таблицы 1.

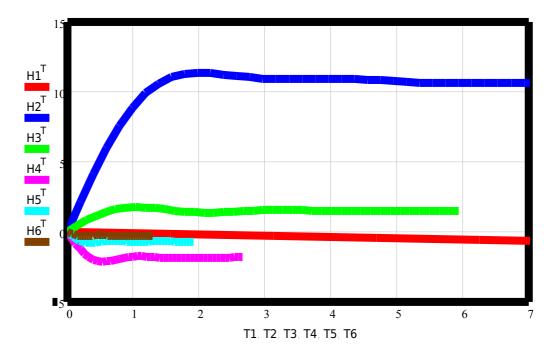


Рисунок 14. Графики h-функций скорректированной САУ.

h-функции были рассчитаны и построены при помощи ЭВМ и ПО Mathcad. Векторы H1-H6 (рис. 14) содержат табличные значения h-функций, умноженные на соответствующее значения P(0) определенной трапеции, а векторы T1-T6 – отсчеты реального времени, которым соответствуют значения соответствующих h-функций. Переходная характеристика САУ получается ординатным суммированием значений h-функций в определенном временном интервале.

График приближенной переходной характеристики ($h_{\Sigma}(t)$) скорректированной САУ изображен на рисунке 15. График изображен на фоне точной переходной функции САУ, полученной вычислением обратного преобразования Лапласа на ЭВМ выражения для изображения выходного сигнала:

$$Y(p) = \frac{1}{p} H_{g,\kappa}(p) \quad . \tag{2}$$

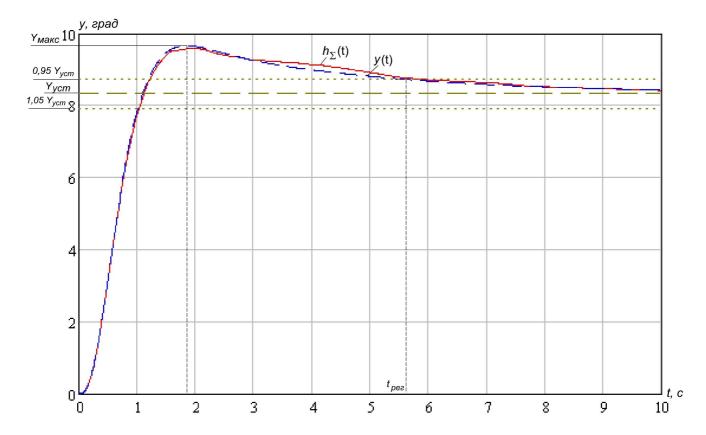


Рисунок 15. Графики точной (y(t)) и приближенной ($h_{\Sigma}(t)$) переходных функций скорректированной САУ.

Анализируя график переходной функции скорректированной САУ, можно сделать вывод об удовлетворительном действии корректирующего устройства на систему. Показатели качества регулирования скорректированной САУ более высоки, чем заданные:

$$\sigma$$
=13,7%; t_{pec} =5,7 c.

Определение квадратичной интегральной оценки качества регулирования скорректированной САУ

Согласно выражению (2), изображение по Лапласу регулируемой величины может быть представлено в виде:

$$Y(p) = \frac{1}{p} H_{g.\kappa}(p) = \frac{1}{p} \cdot \frac{b_0 p^m + b_1 p^{m-1} + \dots + b_m}{a_0 p^n + a_1 p^{n-1} + \dots + a_n} ,$$

где $H_{g,\kappa}(p) = \frac{b_0 p^m + b_1 p^{m-1} + \ldots + b_m}{a_0 p^n + a_1 p^{n-1} + \ldots + a_n}$ - передаточная функция скорректированной САУ по задающему воздействию.

Приведение выражения (1) передаточной функции $H_{g,\kappa}(p)$ к каноническому виду дает:

$$H_{g.\kappa}(p) = \frac{T_{u1}K_{OP}K_{\Pi P}K_{\Pi}p + K_{OP}K_{\Pi P}K_{\Pi}}{T_{u0}T_{\Pi P}^{3}p^{5} + \left(T_{\Pi P}^{3} + 3T_{u0}T_{\Pi P}^{2}\right) \cdot p^{4} + \left(3T_{\Pi P}^{2} + 3T_{u0}T_{\Pi P}\right) \cdot p^{3} + \left(3T_{\Pi P} + T_{u0}\right) \cdot p^{2} + \left(K_{OC}K_{OP}K_{\Pi P}K_{\Pi P$$

Таким образом, порядки полиномов числителя и знаменателя соответственно равны:

Соответствующие коэффициенты полиномов числителя и знаменателя $H_{g,\kappa}(p)$ будут равны:

$$b_{0} = T_{u1}K_{OP}K_{\Pi P}K_{\Lambda} = 3,852 \cdot 55 \cdot 9 \cdot 0,8 = 1525,38;$$

$$b_{1} = K_{OP}K_{\Pi P}K_{\Lambda} = 55 \cdot 9 \cdot 0,8 = 396;$$

$$a_{0} = T_{u0}T_{\Pi P}^{-3} = 117,57 \cdot 0,09^{3} = 0,086;$$

$$a_{1} = T_{\Pi P}^{-3} + 3T_{u0}T_{\Pi P}^{-2} = 0,09^{3} + 3 \cdot 117,57 \cdot 0,09^{2} = 2,858;$$

$$a_{2} = 3T_{\Pi P}^{-2} + 3T_{u0}T_{\Pi P} = 3 \cdot 0,09^{2} + 3 \cdot 117,57 \cdot 0,09 = 31,767;$$

$$a_{3} = 3T_{\Pi P} + T_{u0} = 3 \cdot 0,09 + 117,57 = 117,836;$$

$$a_{4} = K_{OC}K_{OP}K_{\Pi P}K_{\Lambda}T_{u1} + 1 = 0,12 \cdot 55 \cdot 9 \cdot 0,9 \cdot 3,852 + 1 = 184,034;$$

$$a_{5} = K_{OC}K_{OP}K_{\Pi P}K_{\Lambda} = 0,12 \cdot 55 \cdot 9 \cdot 0,9 = 47,52.$$

Квадратичная интегральная оценка может быть вычислена согласно выражению [2,3]:

$$I_{2} = \int_{0}^{\infty} \varepsilon^{2}(t)dt = \frac{1}{2a_{5}^{2}\Delta} \cdot \left(B_{1}\Delta_{1} + B_{0}\Delta_{0}\right) - \frac{b_{1}b_{0}}{a_{5}^{2}} , \qquad (3)$$

где:

$$\Delta = \begin{vmatrix} a_5 & -a_3 & a_1 & 0 & 0 \\ 0 & a_4 & -a_2 & 0 & 0 \\ 0 & -a_5 & a_3 & -a_1 & 0 \\ 0 & 0 & -a_4 & a_2 & 0 \\ 0 & 0 & a_5 & -a_3 & a_1 \end{vmatrix} = \begin{vmatrix} 47,52 & -117,836 & 2,858 & 0 & 0 \\ 0 & 184,034 & -31,767 & 0 & 0 \\ 0 & 0 & -184,034 & 31,767 & 0 \\ 0 & 0 & 47,52 & -117,836 & 2,858 \end{vmatrix} = 7,389 \cdot 10^7;$$

$$\Delta_0 = \begin{vmatrix} a_5 & a_4 & a_1 & 0 & 0 \\ 0 & a_5 & -a_2 & 0 & 0 \\ 0 & 0 & a_3 & -a_1 & 0 \\ 0 & 0 & a_5 & -a_3 & a_1 \end{vmatrix} = \begin{vmatrix} 47,52 & 184,034 & 2,858 & 0 & 0 \\ 0 & 47,52 & -31,767 & 0 & 0 \\ 0 & 0 & -184,034 & 31,767 & 0 \\ 0 & 0 & -184,034 & 31,767 & 0 \\ 0 & 0 & -184,034 & 31,767 & 0 \\ 0 & 0 & 47,52 & -117,836 & 2,858 \end{vmatrix} = 2,076 \cdot 10^7;$$

$$\Delta_1 = \begin{vmatrix} a_4 & -a_3 & a_1 & 0 & 0 \\ a_5 & a_4 & -a_2 & 0 & 0 \\ 0 & 0 & -a_5 & a_3 & -a_1 & 0 \\ 0 & 0 & -a_4 & a_2 & 0 \\ 0 & 0 & -47,52 & 117,836 & 2,858 & 0 \\ 0 & 0 & -184,034 & 31,767 & 0 \\ 0 & 0 & -184,034 & 31,767 & 0 \\ 0 & 0 & -47,52 & 117,836 & 2,858 & 0 \\ 0 & 0 & -184,034 & 31,767 & 0 \\ 0 & 0 & -$$

$$B_0 = b_0^2 = 1525,38^2 = 2326488,861;$$

$$B_1 = b_1^2 = 396^2 = 156816;$$

Таким образом, величина I_2 , согласно (3) будет равна:

$$I_2 = \frac{156816 \cdot 3,371 \cdot 10^8 + 2326488,861 \cdot 2,076 \cdot 10^7}{2 \cdot 47,52^2 \cdot 7,389 \cdot 10^7} - \frac{396 \cdot 1525,38}{47,52^2} = 35,642$$

Описание математической модели скорректированной САУ в пространстве состояний

Система уравнений САУ в пространстве состояний имеет вид [2,3]:

$$\begin{cases} [\dot{x}] = [A] \times [x] + [B] \times [u]; \\ [y] = [C] \times [x], \end{cases}$$

где x, y, u — соответственно векторы переменных состояния, выходных величин и управляющих воздействий системы; A, B, C — соответственно системная матрица, матрица управления и

наблюдения.

Воспользовавшись каноническим представлением функции $H_{\rm g,k}({\rm p})$, преобразуем структурную схему скорректированной замкнутой САУ к типу, состоящему из идеальных интеграторов и пропорциональных блоков (рис. 16). Количество интеграторов на рисунке 16 соответствует порядку системы. Из структурной схемы на рисунке 16 можно получить систему линейных дифференциальных уравнений САУ в пространстве состояний, записанную в операторной форме:

$$\begin{cases} px_5 = \frac{1}{a_0} [g - a_1 x_5 - a_2 x_4 - a_3 x_3 - a_4 x_2 - a_5 x_1]; \\ px_4 = x_5; \\ px_3 = x_4; \\ px_2 = x_3; \\ px_1 = x_2; \\ y = K \cdot x_1 - KT_{u1} \cdot x_2, \end{cases}$$

$$A = \begin{bmatrix} -\frac{a_5}{a_0} & -\frac{a_4}{a_0} & -\frac{a_3}{a_0} & -\frac{a_2}{a_0} & -\frac{a_1}{a_0} \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} -554,46 & -2,147 \cdot 10^3 & -1,375 \cdot 10^3 & -370,65 & -33,34 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

$$B = \begin{cases} 1/a_0 \\ 0 \\ 0 \\ 0 \\ 0 \end{cases} = \begin{cases} 11,67 \\ 0 \\ 0 \\ 0 \\ 0 \end{cases}; C = \begin{bmatrix} K & KT_{u1} & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 47,52 & 183,03 & 0 & 0 & 0 \end{bmatrix}.$$

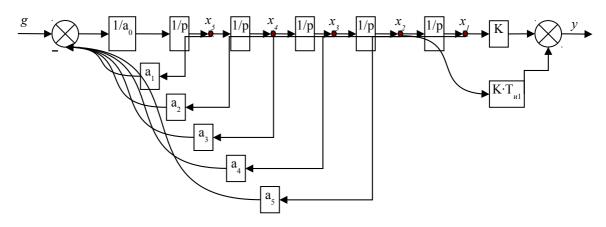


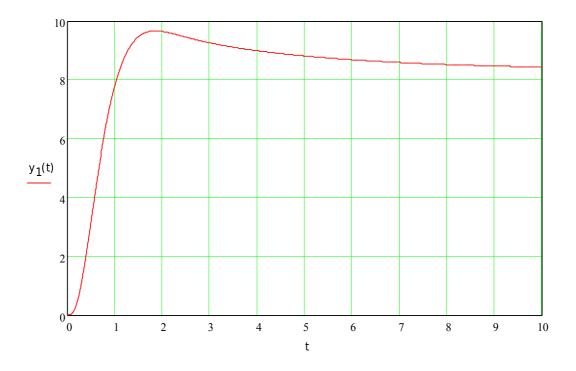
Рисунок 16. Структурная схема скорректированной САУ, составленная из идеальных интеграторов и пропорциональных блоков

Для получения выражений переходных функций скорректированной САУ от управляющих воздействий вида $s_1(t) = t(t)$; $s_2(t) = t(t) > t(t)$ удобно воспользоваться ЭВМ и ПО Mathcad, в частности процессором символьных вычислений последнего:

$$G_1(p) := \frac{1}{p}$$

$$Y_1(p) := G_1(p) \cdot H_{g,k}(p)$$

$$\text{Y_1(p)} := \text{Y}_1(p) \ \left| \begin{array}{c} \text{convertparfracp} \\ \text{float,5} \end{array} \right. \\ \rightarrow \frac{8.3333}{p} + \frac{2.3410}{p + .31733} - 3.8893 \\ \hline \\ p^2 + 28.283p + 218.05 \end{array} \\ - 3.8893 \\ \hline \\ p^2 + 4.7419p + 8.0132 \\ \hline \\ p^2 + 4.7419p + 8.0132 \\ \hline \\ p^2 + 28.283p + 218.05 \\ \hline \\ p^2 + 28.283p + 218.05 \\ \hline \\ p^2 + 4.7419p + 8.0132 \\ \hline \\ p^2 + 4.7419p + 8.0132 \\ \hline \\ p^2 + 28.283p + 218.05 \\ \hline \\ p^2 + 4.7419p + 8.0132 \\ \hline \\ p^2 + 28.283p + 218.05 \\ \hline \\ p^2 + 28.283p + 218.05 \\ \hline \\ p^2 + 4.7419p + 8.0132 \\ \hline \\ p^2 + 28.283p + 218.05 \\ \hline \\ p^2 + 28.283p + 218.05 \\ \hline \\ p^2 + 4.7419p + 8.0132 \\ \hline \\ p^2 + 4.7419p + 8.0$$



$$\mathsf{G_2}(\mathsf{p}) \coloneqq \frac{1}{\mathsf{p}^2}$$

 $Y_2(p) := G_2(p) \cdot H_{g.\kappa}(p)$

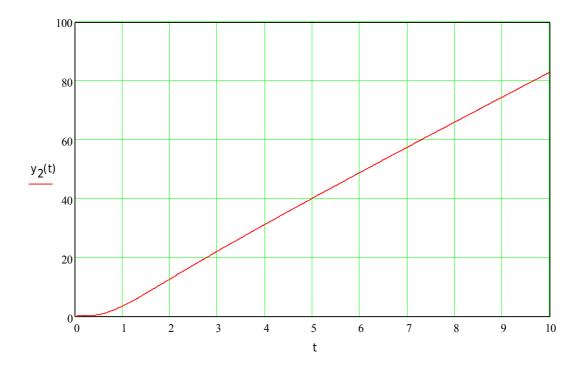


График функции $y_1(t)$ совпадает с аналогичным, представленным на рисунке 15. График функции $y_2(t)$ представляет отклик САУ на линейно возрастающее управляющее воздействие. Очевидно, что результаты полученные при расчетах переходных функций на ЭВМ более точны, чем аналогичные, полученные применением графо-аналитического метода Солодовникова. Выводы о качестве регулирования скорректированной САУ были сделаны ранее.

Определение установившей ошибки по возмущению в скорректированной САУ

Взаимосвязь между сигналом возмущения и ошибкой возмущения в замкнутой скорректированной САУ имеет вид:

$$-f = (1 + W_{sc}(p)) \cdot e_f$$

где $W_{\infty}(P) = K_{\infty}(P) \cdot W_{\infty}(P) \cdot W_{\infty}(P)$ - передаточная функция скорректированной САУ в разомкнутом состоянии с учетом обратной связи. Таким образом, передаточная функция от ошибки по возмущению в скорректированной САУ будет иметь вид:

$$\begin{split} H_{ef}'(p) &= -\frac{e}{f} = \frac{1}{1 + W_{xc}(p)} = \frac{1}{1 + K_{OC} \cdot W_{\kappa y}(p) \cdot W_{g}(p)} = \\ &= \frac{p(T_{u0}p + 1) \cdot \left(T_{IIP}^{3} p^{3} + 3T_{IIP}^{2} p^{2} + 3T_{IIP} p + 1\right)}{T_{u0}T_{IIP}^{3} p^{5} + \left(T_{IIP}^{3} + 3T_{u0}T_{IIP}^{2}\right) \cdot p^{4} + \left(3T_{IIP}^{2} + 3T_{u0}T_{IIP}\right) \cdot p^{3} + \left(3T_{IIP} + T_{u0}\right) \cdot p^{2} + \left(K_{OC}K_{OP}K_{IIP}K_{II}T_{II} + 1\right) \cdot p^{2}} \end{split}$$

Установившееся значение ошибки по возмущению может быть определено использованием предельного свойства преобразования Лапласа:

$$e_f(t) = \lim_{p \to 0} pH'_{ef}(p) \frac{1}{p} = H'_{ef}(0) = 0$$
.

24

ПЕРЕЧЕНЬ ССЫЛОК

- 1. Основы теории управления. Методические указания к курсовой работе.
- 2. Иващенко, Н.Н. Автоматическое регулирование./ Н.Н. Иващенко. -М.: Машиностроение, 1973.-607 с.
- 3. Теория автоматического регулирования. Бесекерский В. А., Попов Е. П., издательство «Наука», Главная редакция физико-математической литературы, М., 1972, 768 стр.
- 4. Беседы по автоматике. Голубничий Н. И., Зайцев Г. Ф., Иващенко М. А., Чинаев П. И., Чумаков Н. М., «Техника», 1971, 232 стр.